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ENUMERATING QUASIPLATONIC CYCLIC
GROUP ACTIONS

ROBERT BENIM AND AARON WOOTTON

ABSTRACT. It is an open problem to determine the num-
ber of topologically distinct ways that a finite group can act
upon a compact oriented surface X of genus g(X) ≥ 2. We
provide an explicit answer to this problem for special classes of
cyclic groups and illustrate our results with detailed examples.

1. Introduction. A consequence of a resolution to the Nielsen
realization problem, see [10], is that there is a one-to-one correspon-
dence between conjugacy classes of finite subgroups of the mapping
class group Mσ of a compact oriented surface of genus σ and the topo-
logical equivalence classes of finite groups of homeomorphisms which
can act on such a surface. This correspondence has motivated a de-
tailed study of classes of topological group actions, and, in particular,
an attempt to classify or enumerate the different ways a group G can
act topologically on a surface X of genus σ ≥ 2, see for example, [2,
3, 6, 7] where Abelian groups are considered, and [13, 14] for other
examples. In general, the problem of enumerating classes of topologi-
cal group actions for arbitrary σ is highly computational and depends
very much upon how G acts on X as well as the general structure of
G. Indeed, the known results even for very simple classes of groups
such as Abelian groups are very technical, and so a general classifica-
tion for arbitrary groups seems unlikely. Moreover, for an arbitrary
G and σ, even answering the simple question, “does G act on a sur-
face of genus σ,” is typically non-trivial. These observations motivate
a study of classes of topological group actions of structurally simple
groups acting in a relatively simple way where it may be possible to
derive extremely explicit enumeration formulas as a stepping stone to
studying more complicated group actions.

The technical enumeration formulas derived in [3] for elementary
Abelian group actions of low rank illustrate how difficult it is to obtain
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