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AN INTERESTING TOPOLOGICAL SPACE
USING WEAK TOPOLOGY

S.I. NADA AND D.L. FEARNLEY

ABSTRACT. We use weak topology to construct an ex-
ample of a space which is Hausdorff, not first countable and
not regular, but which preserves many of the properties of a
planar open set.

1. Introduction. Cohen [1] defined weak topology as follows. Let
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where each X, is a topological space. We say that U C £ is open (in
the weak topology induced by the X, subsets) if U N X,, is open in X,,
for all a € J. In general, we note that, for a topological space X, if
X, C X has the subspace topology for all & € J and X = UyegXq,
then if we define £ = U,ecjX, to be the space whose points are the
points of X, with weak topology induced by the X, subsets, then the
topology on £ is at least as fine as the topology on X. Every open
set in X intersects each X, in an open set in X, by definition of the
subspace topology and is therefore open in £. It is possible, of course,
for the topologies on X and £ to be the same.

We will use the convention that (z,) refers to a sequence of points
(x1,x9,23,...) and use the notation (z,) — p to mean that (z,)
converges to p, and we will use {z,,} to denote {x1, z3, 23, ...}, the set
of image points for (z,,). Let R? denote the plane with the Euclidean
metric.

2. Properties of the space EQ.

Example. For every point p € R?, let T}, be the union of a vertical
and a horizontal line in R? which intersect at point p (a translation of
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