AN INTERESTING TOPOLOGICAL SPACE USING WEAK TOPOLOGY

S.I. NADA AND D.L. FEARNLEY

ABSTRACT. We use weak topology to construct an example of a space which is Hausdorff, not first countable and not regular, but which preserves many of the properties of a planar open set.

1. Introduction. Cohen [1] defined weak topology as follows. Let

$$\xi = \bigcup_{\alpha \in J} X_{\alpha},$$

where each X_{α} is a topological space. We say that $U \subset \xi$ is open (in the weak topology induced by the X_{α} subsets) if $U \cap X_{\alpha}$ is open in X_{α} for all $\alpha \in J$. In general, we note that, for a topological space X, if $X_{\alpha} \subset X$ has the subspace topology for all $\alpha \in J$ and $X = \bigcup_{\alpha \in J} X_{\alpha}$, then if we define $\xi = \bigcup_{\alpha \in J} X_{\alpha}$ to be the space whose points are the points of X, with weak topology induced by the X_{α} subsets, then the topology on ξ is at least as fine as the topology on X. Every open set in X intersects each X_{α} in an open set in X_{α} by definition of the subspace topology and is therefore open in ξ . It is possible, of course, for the topologies on X and ξ to be the same.

We will use the convention that (x_n) refers to a sequence of points (x_1, x_2, x_3, \dots) and use the notation $(x_n) \rightarrow p$ to mean that (x_n) converges to p, and we will use $\{x_n\}$ to denote $\{x_1, x_2, x_3, \dots\}$, the set of image points for (x_n) . Let \mathbb{R}^2 denote the plane with the Euclidean metric.

2. Properties of the space \overline{R}^2 .

Example. For every point $p \in \mathbb{R}^2$, let T_p be the union of a vertical and a horizontal line in \mathbb{R}^2 which intersect at point p (a translation of

²⁰¹⁰ AMS Mathematics subject classification. Primary 54A10, 54H05, 54F45. Keywords and phrases. Weak topology, Hausdorff, first countable, Baire cate-

gory theorem, separation axioms.

The second author is the corresponding author. Received by the editors on July 9, 2010, and in revised form on September 9, 2010.

DOI:10.1216/RMJ-2013-43-2-563 Copyright ©2013 Rocky Mountain Mathematics Consortium