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ON THE SIGNATURE OF
A CLASS OF CONGRUENCE SUBGROUPS

C.J. CUMMINS AND N.S. HAGHIGHI

ABSTRACT. We find explicit formulas for the signatures
of a large family of congruence subgroups of SL(2,Z). The
family depends upon five parameters and includes a family
of groups first introduced by Larcher. Larcher showed that
every (regular) congruence subgroup G contains at least one
subgroup H from this family, such that G and H have the
same parabolic elements. Thus, every congruence subgroup
contains a “large” Larcher subgroup. These facts were used
by Sebbar to classify the torsion-free, genus-zero congruence
subgroups of PSL(2,R). The results of this paper have been
used by one of the authors to classify the torsion-free, genus-
one congruence subgroups of PSL(2,R).

1. Introduction. Let Γ := SL(2,Z), and define a subgroup H
of Γ to be a congruence subgroup if it contains one of the principal
congruence subgroups:

Γ(N) =

{(
a b
c d

)
∈ Γ | (a− 1) ≡ (d− 1) ≡ b ≡ c ≡ 0 (mod N)

}
.

The smallest N such that Γ(N) is contained in H is called the level of
H .

Let H be the complex upper half-plane and H∗ = H ∪ Q∗ where
Q∗ = Q∪{∞}. IfH is a subgroup of Γ, then H acts on both Q∗ and H∗

by fractional linear transformations. IfH is a finite index subgroup of Γ,
then the number of orbits of H acting on Q∗ is called the cusp number
of H . For each α ∈ Q∗, let Hα be the stabilizer of α in H . The set of
cusp widths of H is defined to be C(H) = {Index (Γα : Hα) | α ∈ Q∗}
where Γα and Hα are the images of Γα and Hα in Γ := PSL (2,Z),
respectively.

It is a surprising fact that, for any congruence subgroup H , the set of
cusp widths C(H) is closed under taking greatest common divisors and
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