SOME CRITERIA FOR $C_p(X)$ TO BE AN $L\Sigma(\leq \omega)$ -SPACE

V.V. TKACHUK

ABSTRACT. Given a cardinal κ say that X is an $L\Sigma(<\kappa)$ space $(L\Sigma(\leq \kappa)$ -space) if X has a countable network \mathcal{F} with respect to a cover \mathcal{C} of X by compact subspaces of weight strictly less than κ (less than or equal to κ , respectively), i.e., given any $C \in \mathcal{C}$, we have $w(C) < \kappa (w(C) \leq \kappa)$ and, for any $U \in \tau(X)$ with $C \subset U$, there exists $F \in \mathcal{F}$ such that $C \subset F \subset U$. These concepts were introduced and studied by Kubiś, Okunev and Szeptycki. We show that if $C_p(X)$ is a Lindelöf Σ -space and $|X| \leq \mathfrak{c}$, then $C_p(X)$ is an $L\Sigma(\leq \omega)$ -space. This answers two questions of Kubiś, Okunev and Szeptycki. We also prove that if X is a space and $C_p(X)$ has the $L\Sigma(<\omega)$ -property, then X is cosmic, i.e., $nw(X) \leq \omega$. This answers (in a stronger form) a question of Okunev published in Open Problems in Topology II.

0. Introduction. Lindelöf Σ -spaces constitute the smallest class which contains all compact spaces, all second countable spaces and is invariant under continuous images, closed subspaces and finite products. This explains why the Lindelöf Σ -property is so important in topology, functional analysis and descriptive set theory. One of a dozen equivalent definitions says that X is a Lindelöf Σ -space if and only if there exists a second countable space M and an upper semicontinuous compact-valued onto map $\varphi: M \to X$.

Given a class \mathcal{K} of compact spaces, Kubiś, Okunev and Szeptycki introduced and studied in [5] the class $L\Sigma(\mathcal{K})$ of spaces X for which there exists a second countable space M and an upper semicontinuous onto map $\varphi : M \to X$ such that $\varphi(x)$ belongs to the class \mathcal{K} for any $x \in M$. Let κ be a (not necessarily infinite) cardinal. If \mathcal{K} consists of compact spaces of weight at most κ (or strictly less than κ , respectively)

DOI:10.1216/RMJ-2013-43-1-373 Copyright ©2013 Rocky Mountain Mathematics Consortium

²⁰¹⁰ AMS Mathematics subject classification. Primary 54H11, 54C10, 22A05, 54D06, Secondary 54D25, 54C25.

Keywords and phrases. Lindelöf Σ -space, $L\Sigma(<\omega)$ -space, $L\Sigma(\le\omega)$ -space, function space, cosmic space, network, upper semicontinuous map.

Research supported by Consejo Nacional de Ciencia y Tecnologí a (CONACyT) of Mexico grants 94897 and 400200-5-38164-E.

Received by the editors on January 27, 2010, and in revised form on June 10, 2010.