PARABOLIC SUBGROUPS OF COXETER GROUPS ACTING BY REFLECTIONS ON CAT(0) SPACES

TETSUYA HOSAKA

Abstract

We consider a cocompact discrete reflection group W of a CAT(0) space X. Then W becomes a Coxeter group. In this paper, we study an analogy between the Davis-Moussong complex $\Sigma(W, S)$ and the CAT(0) space X and show several analogous results about the limit set of a parabolic subgroup of the Coxeter group W.

1. Introduction and preliminaries. The purpose of this paper is to study the limit set of a parabolic subgroup of a reflection group of a CAT(0) space. A metric space (X, d) is called a geodesic space if for each $x, y \in X$, there exists an isometric embedding $\xi:[0, d(x, y)] \rightarrow X$ such that $\xi(0)=x$ and $\xi(d(x, y))=y$ (such a ξ is called a geodesic). We say that an isometry r of a geodesic space X is a reflection of X, if
(1) r^{2} is the identity of X,
(2) Int $F_{r}=\varnothing$ for the fixed-point set F_{r} of r,
(3) $X \backslash F_{r}$ has exactly two convex components X_{r}^{+}and X_{r}^{-}, and
(4) $r X_{r}^{+}=X_{r}^{-}$and $r X_{r}^{-}=X_{r}^{+}$,
where the fixed-point set F_{r} of r is called the wall of r. Let X_{r}^{+}and X_{r}^{-}be the two convex connected components of $X \backslash F_{r}$, where X_{r}^{+} contains a basepoint of X. An isometry group Γ of a geodesic space X is called a reflection group, if some set of reflections of X generates Γ.

Let Γ be a reflection group of a geodesic space X, and let R be the set of all reflections of X in Γ. Now we suppose that the action of Γ on X is proper, that is, $\{\gamma \in \Gamma \mid \gamma x \in B(x, N)\}$ is finite for any $x \in X$ and $N>0$ (cf. [2, page131]). Then the set $\left\{F_{r} \mid r \in R\right\}$ is locally finite. Let C be a component of $X \backslash \bigcup_{r \in R} F_{r}$, which is called a chamber. Then $\Gamma C=X \backslash \bigcup_{r \in R} F_{r}, \Gamma \bar{C}=X$ and for each $\gamma \in \Gamma$, either $C \cap \gamma C=\varnothing$ or

[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 20F65, 20F55, 57M07.
 Keywords and phrases. Reflection group, Coxeter group, parabolic subgroup of a Coxeter group.

 Received by the editors on September 25, 2004, and in revised form on November 14, 2009.

