BEST APPROXIMATION FORMULAS FOR THE DUNKL L^2 -MULTIPLIER OPERATORS ON \mathbb{R}^d

FETHI SOLTANI

ABSTRACT. We study the Dunkl L^2 -multiplier operators on \mathbf{R}^d , and we give for them Calderón's reproducing formulas and best approximation formulas using the theory of Dunkl transform and reproducing kernels.

1. Introduction. The Dunkl operators \mathcal{D}_j ; $j=1,\ldots,d$, on \mathbf{R}^d , are parameterized differential-difference operators [2], acting on some Euclidean space. These operators extend the usual partial derivatives by additional reflection terms and give rise to generalizations of many multi-variable analytic structures like the exponential function, the Fourier transform and the standard convolution [3, 4, 7, 15]. During the last decade, such operators have found considerable attention in various areas of mathematics and mathematical physics [3, 4, 7, 9]. They allow the development of Dunkl L^2 -multiplier operators on \mathbf{R}^d from classical theory of Fourier analysis (see [6, 11, 12, 17]).

The Dunkl analysis, with respect to the multiplicity function k, concerns the Dunkl operators \mathcal{D}_j , Dunkl transform \mathcal{F}_k and Dunkl convolution $*_k$ on \mathbf{R}^d . In the limit case k=0; \mathcal{D}_j , \mathcal{F}_k and $*_k$ agree with the partial derivatives ∂_j , Fourier transform \mathcal{F} and standard convolution *, respectively.

Let m be a function in the Lebesgue space $L^2(\mathbf{R}^d, w_k(x)dx)$, where w_k is a positive weight function on \mathbf{R}^d which will be defined later in Section 2. We define the Dunkl L^2 -multiplier operators on \mathbf{R}^d , for regular functions f, by

$$T_{k,m,a}f(x) := \mathcal{F}_k^{-1}[m_a\mathcal{F}_k(f)](x), \quad a > 0,$$

where m_a is the function given by

$$m_a(x) = m(ax).$$

²⁰¹⁰ AMS Mathematics subject classification. Primary 42C15, 44A15.

Keywords and phrases. Dunkl operators, L²-multiplier operators, Calderón's

reproducing formulas, best approximation formulas.

Received by the editors on March 31, 2009, and in revised form on June 24, 2009.