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ARITHMETIC PROGRESSIONS ON
CONGRUENT NUMBER ELLIPTIC CURVES

BLAIR K. SPEARMAN

ABSTRACT. We give an infinite family of congruent num-
ber elliptic curves each possessing a nontrivial rational arith-
metic progression. These elliptic curves yield a new infinite
family of congruent number curves having rank at least three.

1. Introduction. The congruent number elliptic curves are defined
by
E, :y* = z(z? — n?),

where n is a positive integer. If P;, i = 1, 2, 3, are rational points on F,,,
then they form an arithmetic progression if their z—coordinates x; =
z(P;) form an arithmetic progression. Such an arithmetic progression
is called trivial if at least one of the points P; is a torsion point,
that is, P; € {(0,0),(n,0),(—n,0)} for some i = 1,2,3. Otherwise
the arithmetic progression is nontrivial. In [2], Bremner, Silverman
and Tzanakis showed that the curves F, do not possess a nontrivial
arithmetic progression of integral points if the rank of E,, is equal to 1.
They do give one congruent number curve with a nontrivial arithmetic
progression of integral points, namely,

y® = z(x? — 1254%),
with integral points
(—528,26136), (—363, 22869), (—198,17424).
In [1] Bremner noted that rational points in arithmetic progression

tend to be independent in the group of rational points. This suggests
a possible rank of at least 3 for Fi254. In fact the rank of Fjgs4 is
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