COASSOCIATED PRIMES OF LOCAL HOMOLOGY AND LOCAL COHOMOLOGY MODULES

AMIR MAFI AND HERO SAREMI

ABSTRACT. Let (R,\mathfrak{m}) be a commutative Noetherian local ring, \mathfrak{a} an ideal of R and A an Artinian R-module. Let t be a positive integer such that the local homology module $H_i^{\mathfrak{a}}(A)$ is Artinian for all i < t. Then $\operatorname{Tor}_j^R(R/\mathfrak{a}, H_t^{\mathfrak{a}}(A))$ is Artinian for j = 0, 1. In particular, the set $V(\mathfrak{a}) \cap \operatorname{Coass}(H_t^{\mathfrak{a}}(A))$ is finite, where $V(\mathfrak{a})$ denotes the set of all prime ideals of R containing \mathfrak{a} . Moreover, we show that whenever $\operatorname{Cosupp}(H_i^{\mathfrak{a}}(A))$ is finite for all i < t, then the set $V(\mathfrak{a}) \cap \operatorname{Coass}(H_t^{\mathfrak{a}}(A))$ is finite. Also, for a finitely generated module M, we show that $R/\mathfrak{a} \otimes_R H_{\mathfrak{a}}^t(M)$ is Artinian whenever the local cohomology module $H_{\mathfrak{a}}^{\mathfrak{a}}(M)$ is Artinian for all i > t.

In particular, the set $V(\mathfrak{a}) \cap \text{Coass}(H^t_{\mathfrak{a}}(M))$ is finite.

1. Introduction. Throughout this paper we assume that R is a commutative Noetherian ring with non-zero identity and \mathfrak{a} is an ideal of R. We use M and A to denote a finitely generated and an Artinian R-module respectively. For each non-negative integer i, the ith local cohomology module of M with respect to \mathfrak{a} is denoted by $H^i_{\mathfrak{a}}(M)$. We refer the reader to [2] for the definition of local cohomology and its basic properties.

In [8], Huneke asked whether the number of associated prime ideals of a local cohomology module $H^i_{\mathfrak{a}}(M)$ is always finite. In [20], Singh has given an example of Noetherian non-local ring R and an ideal \mathfrak{a} such that $H^3_{\mathfrak{a}}(R)$ has infinitely many associated primes. More recently, in [9], Katzman constructed a hypersurface S and an ideal \mathfrak{a} such that $H^2_{\mathfrak{a}}(S)$ has infinitely many associated primes (see also [21]). However, it is known that this conjecture is true in many situations. For example, Brodmann and Lashgari [1] showed that the first non finitely generated local cohomology module $H^i_{\mathfrak{a}}(M)$ with respect to an ideal \mathfrak{a} has only finitely many associated primes. Also, Khashyarmanesh

Keywords and phrases. Artinian module, local homology module, local cohomology module, coassociated prime ideal.

This research was supported in part by a grant from IPM (No. 87130024).

Received by the editors on March 5, 2008, and in revised form on February 10,