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ON KRONECKER POLYNOMIALS

AHMED AYACHE, OTHMAN ECHI AND MONGI NAIMI

ABSTRACT. Monic polynomials with integer coefficients
having all their roots in the unit disc have been studied by
Kronecker; they are called Kronecker polynomials. Let n > 1
be an integer. By a strong Kronecker polynomial, we mean
a monic polynomial P(X) € Z[X] of degree n — 1 and such
that P(X) divides P(X?) for each t € {1,...,n — 1}. We
say that P(X) is an absolutely Kronecker polynomial if P(X)
divides P(X?) for each positive integer t. We describe a
canonical form of strong (respectively absolute) Kronecker
polynomials. We, also, prove that if n is composite, then each
strong Kronecker polynomial with degree n — 1 is absolutely
Kronecker. If n is prime, then we prove that each strong
Kronecker polynomial P(X) # 1+ X + X2 + ...+ X* ! is
absolutely Kronecker.

0. Introduction. In 1857, Kronecker [4] was interested in monic
polynomials (i.e., with highest coefficient 1) with integer coefficients
having all their roots in the unit disc (Kronecker polynomials). Kro-
necker proved that the non-zero roots of such polynomials are on the
boundary of the unit disc (the unit circle); he also proved that there
are finitely many such polynomials of degree a given positive integer n.

In 2001, Pantelis Damianou [3] described a canonical form of these
polynomials and called them Kronecker polynomials. He proved that
these polynomials have the form P(X) = X*Q(X), where Q(X) is a
finite product of cyclotomic polynomials.

In 2000, Doru Caragea and Viviana Ene proposed the following
“Millennial polynomial problem” [1]: Let S be the set of monic,
irreducible polynomials with degree 2000 and integer coefficients. Find
all P € S such that P(a) divides P(a?) for every natural number a.
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