NAGUMO CONDITIONS AND SECOND-ORDER QUASILINEAR EQUATIONS WITH COMPATIBLE NONLINEAR FUNCTIONAL BOUNDARY CONDITIONS

JEAN MAWHIN AND H.B. THOMPSON

Dedicated to the memory of Lloyd Jackson

ABSTRACT. We establish existence results for solutions to nonlinear functional boundary value problems for nonlinear second-order ordinary differential equations assuming there are lower and upper solutions and the right side satisfies a Nagumo growth bound. Our results contain as special cases many results for the p- and ϕ -Laplacians as well as many results where the boundary conditions depend on n-points or even functionals.

1. Introduction.

(1)
$$-\frac{d}{dt}\varphi(t, x, x(t), x'(t)) = f(t, x, x(t), x'(t)), \text{ for a.e. } t \in [0, 1],$$

subject to general functional boundary conditions of the form

(2)
$$G(x(0), x(1), x, x'(0), x'(1)) = (0, 0),$$

where $\varphi \in C([0,1] \times C[0,1] \times \mathbf{R}^2)$, $f:[0,1] \times C[0,1] \times \mathbf{R}^2 \to \mathbf{R}$ satisfies the Carathédory conditions and $G \in C(\mathbf{R}^2 \times C[0,1] \times \mathbf{R}^2; \mathbf{R}^2)$. Our assumptions on φ and f are due to Cabada and Pouso [7]. By a solution x we mean a function $x \in C^1[0,1]$ satisfying (2) such that $\varphi(t,x,x(t),x'(t))$ is absolutely continuous and satisfies (1) almost everywhere on [0,1]. We assume that there are ordered lower and upper solutions, α and β , respectively, for (1) and that the functional boundary conditions are compatible, in a sense defined below. The assumptions on φ are sufficiently general to apply to

$$(r(t)x' + q(t)x)' = f(t, x, x(t), x'(t))$$

²⁰¹⁰ AMS Mathematics subject classification. Primary 34B10, 34B15. Received by the editors on June 20, 2010.