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ALTERNATING SUBSETS AND PERMUTATIONS
AUGUSTINE O. MUNAGI

ABSTRACT. We give new proofs of theorems on alternat-
ing subsets of integers by means of bijective transformations.
It is shown that all known results are consequences of a simple
result on the residue class of an integer. The notion of alter-
nating subset is extended to permutations of {1,2,... ,n}. In
particular, we obtain solutions to the problems of Terquem
and Skolem’s generalization for permutations.

1. Introduction. A finite, increasing, sequence of natural numbers
(z1,22,...) is called alternating [5] if it fulfills the condition

(1) z; Zxi—1 (mod 2), i> 1

The empty sequence and the 1-term sequence are also alternating
sequences by convention.

Such sequences are known as alternating subsets of integers (see for
example [1, 4, 10]). In particular, we recall the fundamental result [1,
2]:

The number h(n,k) of alternating k-subsets of {1,2,... ,n} is given
by

®) iy = (U5 ) 4 (),

where |N| denotes the greatest integer < N. It is known that
> ko h(n, k) = Fny3 — 2, where Fy is the Nth Fibonacci number.
We will adopt the notation [n] = {1,2,... ,n}.

We consider generalizations of (2) and show that practically all known
results are consequences of the following simple lemma on the residue
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