COMPOSITION OPERATORS WHICH IMPROVE INTEGRABILITY BETWEEN WEIGHTED DIRICHLET SPACES

R.A. HIBSCHWEILER

ABSTRACT. The weighted Dirichlet space D_{α} , $(\alpha > -1)$, is the space of analytic functions with derivatives in the weighted Bergman space A_{α}^2 . Let Φ be an analytic self-map of the disc. The composition operator C_{Φ} is said to improve integrability if, for some α,β with $\alpha>\beta$, $C_{\Phi}(f)=f\circ\Phi\in D_{\beta}$ for all $f\in D_{\alpha}$. For $\beta\geq 0$, Carleson-type conditions on a measure related to the generalized Nevanlinna counting function are shown to be necessary and sufficient for the operator $C_{\Phi}:D_{\alpha}\to D_{\beta}$ to be bounded or compact. A simpler characterization is given in the case $\alpha>\beta>0$ for functions Φ of finite valence. For $\beta<0$ and $\alpha>\beta$, $C_{\Phi}:D_{\alpha}\to D_{\beta}$ is compact if and only if $\Phi\in D_{\beta}$ and $\|\Phi\|_{\infty}<1$. Examples are given to show that for $\alpha>\beta\geq 0$, the condition $\|\Phi\|_{\infty}<1$ is not necessary for $C_{\Phi}:D_{\alpha}\to D_{\beta}$ to be compact.

1. The weighted Bergman space A^p_{α} , $(\alpha > -1)$, is the set of functions f analytic in the unit disc D such that

$$||f||_{A^p_{\alpha}}^p = \int_D |f(z)|^p (\log(1/|z|))^{\alpha} dA(z) < \infty.$$

Here A denotes normalized area measure on the disc. The measure defined by $dA_{\alpha}(z) = (\log(1/|z|))^{\alpha} dA(z)$ can be replaced by $(1 - |z|^2)^{\alpha} dA(z)$. This results in the same space of functions and an equivalent norm [13]. As noted in [13], the appropriate definition of A_{α}^2 when $\alpha = -1$ is the Hardy space H^2 .

An analytic function belongs to the weighted Dirichlet space D_{α} if its derivative belongs to A_{α}^{2} . The space D_{α} is normed by

$$||f||_{D_{\alpha}}^2 = |f(0)|^2 + ||f'||_{A_{\alpha}^2}^2.$$

Note that point evaluation functionals are bounded on D_{α} . For $\beta < \alpha$, the inclusion $D_{\beta} \subset D_{\alpha}$ is bounded.

Received by the editors on January 26, 2008, and in revised form on June 19, 2008.

 $DOI: 10.1216 / RMJ-2010-40-6-1887 \quad Copy right © 2010 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Mountain \ Mathematics \ Mountain \ Mathematics \ Mathematics \ Mountain \ Mountain \ Mathematics \ Mountain \ Mountain \ Mathematics \ Mountain \ Mountain \ Mountain \ Mountain \ Mountain \ Mathematics \ Mountain \ Moun$