ON THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE

NIKOS GEORGIOU AND BRENDAN GUILFOYLE

ABSTRACT. We construct a Kähler structure $(\mathbf{J},\Omega,\mathbf{G})$ on the space $\mathbf{L}(\mathbf{H}^3)$ of oriented geodesics of hyperbolic 3-space \mathbf{H}^3 and investigate its properties. We prove that $(\mathbf{L}(\mathbf{H}^3),\mathbf{J})$ is biholomorphic to $\mathbf{P}^1\times\mathbf{P}^1-\overline{\Delta}$, where $\overline{\Delta}$ is the reflected diagonal, and that the Kähler metric \mathbf{G} is of neutral signature, conformally flat and scalar flat. We establish that the identity component of the isometry group of the metric \mathbf{G} on $\mathbf{L}(\mathbf{H}^3)$ is isomorphic to the identity component of the hyperbolic isometry group. Finally, we show that the geodesics of \mathbf{G} correspond to ruled minimal surfaces in \mathbf{H}^3 , which are totally geodesic if and only if the geodesics are null.

1. Introduction. The space $L(M^3)$ of oriented geodesics of a 3-manifold M^3 of constant curvature is a 4-dimensional manifold which carries a natural complex structure J. In the case where M^3 is an Euclidean 3-space E^3 , this complex structure can be traced back to Weierstrass [13] and Whittaker [14], with its modern reemergence occurring in Hitchen's study of monopoles on E^3 [5].

More recently, this structure has been supplemented by a compatible symplectic structure, so that $L(\mathbf{M}^3)$ inherits a natural Kähler structure. This has been investigated when $\mathbf{M}^3 = \mathbf{E}^3$ and $\mathbf{M}^3 = \mathbf{E}^3$ [2, 3, 4], and the purpose of this paper is to study the hyperbolic 3-space case $\mathbf{M}^3 = \mathbf{H}^3$.

From a topological point of view, $\mathbf{L}(\mathbf{M}^3)$ is homeomorphic to $S^2 \times S^2 - \Delta$, where Δ is the diagonal. However, from holomorphic point of view we show that:

Theorem 1. The complex surface $(\mathbf{L}(\mathbf{H}^3), \mathbf{J})$ is biholomorphic to $\mathbf{P}^1 \times \mathbf{P}^1 - \overline{\Delta}$, where $\overline{\Delta}$ is the reflected diagonal (see Definition 2).

²⁰¹⁰ AMS Mathematics subject classification. Primary 51M09, Secondary 51M30

Keywords and phrases. Kaehler structure, hyperbolic 3-space, isometry group.
Received by the editors on November 6, 2007, and in revised form on March 3,

 $DOI: 10.1216 / RMJ-2010-40-4-1183 \quad Copy \ right © 2010 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \$