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ABSTRACT. Let R be a commutative integral domain, let
* be a semistar operation of finite type on R, and let I be
a quasi-x-ideal of R. We show that, if every minimal prime
ideal of I is the radical of a x-finite ideal, then the set Min (1)
of minimal prime ideals over I is finite.

1. Introduction. In [12, Theorem 88|, Kaplansky proved that:
Let R be a commutative ring satisfying the ascending chain condition
(a.c.c. for short) on radical ideals, and let I be an ideal of R. Then
there are only a finite number of prime ideals minimal over I.

This result was generalized in [9, Theorem 1.6] by showing that (see
also [1]): Let R be a commutative ring with identity, and let I # R be
an ideal of R. If every prime ideal minimal over I is the radical of a
finitely generated ideal, then there are only finitely many prime ideals
minimal over I.

In 1994, Okabe and Matsuda [13] introduced the concept of semistar
operation to extend the notion of classical star operations as described
in [8, Section 32]. Star operations have been proven to be an essential
tool in multiplicative ideal theory, allowing one to study different classes
of integral domains. Semistar operations, thanks to a higher flexibility
than star operations, permit a finer study and new classifications of
special classes of integral domains.

Throughout this note let R be a commutative integral domain, with
identity, and let K be its quotient field.

The purpose of this note is to prove the semistar analogue of Ka-
plansky’s [12, Theorem 88| and Gilmer and Heinzer’s [9, Theorem 1.6]
results. More precisely we prove the following theorem.
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