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ARITHMETIC PROGRESSIONS IN
THE SOLUTION SETS OF NORM FORM EQUATIONS

ATTILA BERCZES, LAJOS HAJDU AND ATTILA PETHO

1. Introduction. Let K be an algebraic number field of degree
k, and let a,...,qa, be linearly independent elements of K over Q.
Denote by D € Z the common denominator of ag,...,a,, and put
Bi = Daj, v =1,... ,n. Note that f,...,[3, are algebraic integers of
K. Let m be a nonzero integer, and consider the norm form equation

(1.1) Ng/q(ziar + -+ +zp0,) =m

in integers x1,...,2,. Let H denote the solution set of (1.1) and |H|
the size of H. Note that, if the Z-module generated by a4, ... ,a, con-
tains a submodule, which is a full module in a subfield of Q(as, - .. , ay)
different from the imaginary quadratic fields and Q, then this equation
can have infinitely many solutions (see, e.g., Schmidt [19]). Various
arithmetical properties of the elements of H were studied in [8, 11].
In the present paper we are concerned with arithmetical progressions
in H. Arranging the elements of H in an |H| X n array H, one may
ask at least two natural questions about arithmetical progressions ap-
pearing in H. The “horizontal” one: do there infinitely many rows of
H exist, which form arithmetic progressions; and the “vertical” one:
do arbitrary long arithmetic progressions in some column of H exist?
Note that the first question is meaningful only if n > 2.

The “horizontal” problem was treated by Bérczes and Pethd [4]
by proving that if oy = o' !, i = 1,...,n, then in general H
contains only finitely many effectively computable “horizontal” APs,
and they were able to localize the possible exceptional cases. Later
Bérczes and Pethd [5], Bérczes Pethé and Ziegler [6] and Bazsé [2]
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