SOBOLEV GRADIENTS IN UNIFORMLY CONVEX SPACES

MOHAMAD M. ZAHRAN

1. Introduction. The main idea of this paper is to show how the Beurling-Deny theorem presented in [11] can be extended to find a function from the uniformly convex Sobolev space $H^{1,p}[0,1]$ to the space $L_p[0,1]$, p>2. We also look at the possibility of using that function to establish a relationship between the ordinary gradient $\nabla \varphi$ associated with the Euclidean norm in R^{n+1} and the p-gradient $\nabla_p \varphi$ of a C^1 function φ defined on the uniformly convex Banach space R^{n+1} with the p-norm

(1)
$$||h|| = \left(\sum_{i=1}^{n} \left(\left| \frac{h_i - h_{i-1}}{\delta} \right|^p + \left| \frac{h_i + h_{i-1}}{2} \right|^p \right) \right)^{1/p},$$

$$h = (h_0, h_1, \dots, h_n) \in \mathbb{R}^{n+1}, \quad \delta = \frac{1}{n},$$

which is a finite-dimensional emulation of the Sobolev norm

(2)
$$||f|| = \left(\int_0^1 |f|^p + |f'|^p\right)^{1/p}, \quad f \in H^{1,p}[0,1],$$

in the Sobolev space $H^{1,p}[0,1]$.

In a previous work [16, page 4], we had

(3)
$$(\nabla \varphi)(x) = D^t Q(D(\nabla_p \varphi)(x)),$$

where D_0 , D_1 are functions from \mathbb{R}^{n+1} to \mathbb{R}^n such that

$$D_0 h = \begin{pmatrix} h_1 + h_0/2 \\ h_2 + h_1/2 \\ \vdots \\ h_n + h_{n-1}/2 \end{pmatrix}, \quad D_1 h = \begin{pmatrix} h_1 - h_0/\delta \\ h_2 - h_1/\delta \\ \vdots \\ h_n - h_{n-1}/\delta \end{pmatrix}.$$

Received by the editors on May 25, 2006, and in revised form on November 6, 2006.