GENERATING SINGULARITIES OF WEAK SOLUTIONS OF p-LAPLACE EQUATIONS ON FRACTAL SETS

DARKO ŽUBRINIĆ

ABSTRACT. We study p-Laplace equations $-\Delta_p u = F(x)$ possessing weak solutions in the Sobolev space $W_0^{1,p}(\Omega)$, $\Omega \subset \mathbf{R}^N$, that are singular on prescribed fractal sets having large Hausdorff dimension. With an appropriate choice of $F \in L^{p'}(\Omega)$, the Hausdorff dimension of a singular set of the weak solution can be made arbitrarily close to N-pp' if pp' < N. For p=2, that is, for the classical Laplace equation, the bound N-4 is optimal, provided $N \geq 4$. Moreover, there exist maximally singular solutions, that is, such that the bound is achieved. The proof is obtained via an explicit lower a priori bound of supersolutions corresponding to special choice of righthand sides that are singular near a fractal set.

1. Introduction. Let Ω be an open set in \mathbf{R}^N and 1 . Throughout this paper we assume that <math>p < N, so that functions from the Sobolev space $W^{1,p}(\Omega)$ may have discontinuities. It is well known that, for any function $F \in L^{p'}(\Omega)$, where p' = p/(p-1) is the conjugate exponent, there exists a unique weak solution u of the boundary value problem involving the p-Laplace equation:

(1)
$$-\Delta_p u = F(x) \quad \text{in } \mathcal{D}'(\Omega), \quad u \in W_0^{1,p}(\Omega).$$

We are interested in how large the Hausdorff dimension of the singular set of solutions of this equation can be, generated by righthand sides from $L^{p'}(\Omega)$. Let us recall the definition of the singular set Sing u.

We say that $a \in \Omega$ is a singular point of a measurable function $u \colon \Omega \to \mathbf{R}$ if there exist positive constants γ, ε, C such that

$$u(x) \ge C \cdot |x-a|^{-\gamma}$$
 for almost every $x \in B_{\varepsilon}(a)$,

where $B_{\varepsilon}(a)$ is the open ball of radius ε around a.

Keywords and phrases. p-Laplace equation, weak solution, singular set, fractal set.

set. Received by the editors on September 10, 2005, and in revised form on May 12, 2006.

DOI:10.1216/RMJ-2009-39-1-359 Copyright © 2009 Rocky Mountain Mathematics Consortium