A GENERALIZATION OF WOLSTENHOLME'S HARMONIC SERIES CONGRUENCE

HAO PAN

ABSTRACT. Let A,B be two nonzero integers. Define the Lucas sequences $\{u_n\}_{n=0}^\infty$ and $\{v_n\}_{n=0}^\infty$ by

$$u_0 = 0$$
, $u_1 = 1$, $u_n = Au_{n-1} - Bu_{n-2}$ for $n \ge 2$

and

$$v_0 = 2$$
, $v_1 = A$, $v_n = Av_{n-1} - Bv_{n-2}$ for $n \ge 2$.

For any $n \in \mathbf{Z}^+$, let w_n be the largest divisor of u_n prime to $u_1, u_2, \ldots, u_{n-1}$. We prove that for any $n \geq 5$

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2 - 1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{w_n^2},$$

where $\Delta = A^2 - 4B$.

1. Introduction. Let A, B be two nonzero integers. Define the Lucas sequence $\{u_n\}_{n=0}^{\infty}$ by

$$u_0 = 0$$
, $u_1 = 1$ and $u_n = Au_{n-1} - Bu_{n-2}$ for $n \ge 2$.

Also its companion sequence $\{v_n\}_{n=0}^{\infty}$ is given by

$$v_0 = 2$$
, $v_1 = A$ and $v_n = Av_{n-1} - Bv_{n-2}$ for $n \ge 2$.

Let $\Delta = A^2 - 4B$ be the discriminant of $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$. It is easy to show that

$$v_n = \alpha^n + \beta^n$$

²⁰⁰⁰ AMS Mathematics subject classification. Primary 11B39, Secondary

Keywords and phrases. Wolstenholme's harmonic series congruence, Lucas sequence.

sequence. Received by the editors on February $27,\,2006.$