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GEODESICS AND CURVATURE
OF MOBIUS INVARIANT METRICS

DAVID A. HERRON, ZAIR IBRAGIMOV AND DAVID MINDA

ABSTRACT. We confirm that certain circular arcs are
geodesics for both the Ferrand and Kulkarni-Pinkall metrics.
‘We demonstrate that ‘most’ Kulkarni-Pinkall isometries are
Mobius transformations. We analyze the generalized Gaussian
curvatures of these metrics. We exhibit numerous illustrative
examples.

1. Introduction. This article is a continuation of [5, 6] wherein we
studied a Mobius invariant metric puq(z)|dz| introduced by Kulkarni
and Pinkhall [8] as a canonical metric for M6bius structures on n-
dimensional manifolds. In [5] we employed the definition given below,
see subsection 2.E, and corroborated various properties of this metric
using classical function theory. In [6] we established pointwise and uni-
form estimates between the Kulkarni-Pinkall metric and the hyperbolic
and quasi-hyperbolic metrics.

Here we examine both the Kulkarni-Pinkall metric and a related
metric first studied by Ferrand in [3]. We show that certain curves are
always geodesics for these metrics, confirm that many Kulkarni-Pinkall
isometries are Mdobius transformation, and investigate the generalized
Gaussian curvatures of both metrics. We also prove a number of basic
facts concerning the Kulkarni-Pinkall metric.

Throughout this paper € is a region on the Riemann sphere C with
at least two boundary points. Circular geodesics are one of the central
objects of our study: we call I' a circular geodesic in (2 if there exists a
disk D in C with D C € and such that I is a hyperbolic geodesic line
in D with endpoints in 8D N IN. (See below for all definitions.)
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