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GERBES, 2-GERBES AND SYMPLECTIC FIBRATIONS
TSEMO ARISTIDE

ABSTRACT. Let p: P — N be a symplectic bundle whose
typical fiber is the symplectic manifold (F,w). McDuff has
defined a subgroup Ham®(F,w) of the group of symplectic
automorphisms of (F,w) and has shown that the cohomology
class [w] extends to P if and only if p has a Ham®(F,w)
reduction. The purpose of this paper is to interpret the result
of McDuff using gerbe theory. We define fundamental gerbes
in symplectic geometry which allows us to define a 2-gerbe
which represents the geometric obstruction to lift w to P.
Using these gerbes, we define a geometric quantization of
symplectic manifolds.

1. Introduction. A symplectic fibration P — N is a differentiable
fibration whose typical fiber is the closed connected symplectic manifold
(F,w), and such that there exists a trivialization (Uj, g;;), such that
gij(u) is a symplectic automorphism of the fiber over u, endowed with
a symplectic structure w,, symplectomorphic to (F,w). We suppose
that the cohomology class [w,] of w,, is fixed. The theory of symplectic
bundles has been studied by different authors, see [8, 9, 12, 16]. One
purpose of the paper [16] is to determine whether the structural group
of the symplectic bundle can be reduced to the Hamiltonian group
of (F,w), that is, whether there exists a symplectic bundle P/ — N
isomorphic to P, whose coordinate changes g;;(u) are Hamiltonian
automorphisms of the fiber above u; such a reduction will be called
a Hamiltonian structure, or a Ham-reduction. In [16], it is shown that
the existence of such Hamiltonian reductions on a finite cover of N is
equivalent to the following two conditions:

(i) There exists a closed 2-form €2 defined on P whose cohomology
class [©] extends [w]. This means that the restriction to the fiber above
u of the cohomology class [€?] is the cohomology class [w]. Following
McDuff, we will call the form Q a closed connection form.

(ii) Let Symp (F,w)p be the connected component of the group of
symplectomorphisms Symp (F,w), of (F,w). The symplectic bundle is
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