GERBES, 2-GERBES AND SYMPLECTIC FIBRATIONS

TSEMO ARISTIDE

ABSTRACT. Let $p:P\to N$ be a symplectic bundle whose typical fiber is the symplectic manifold (F,ω) . McDuff has defined a subgroup $\operatorname{Ham}^s(F,\omega)$ of the group of symplectic automorphisms of (F,ω) and has shown that the cohomology class $[\omega]$ extends to P if and only if p has a $\operatorname{Ham}^s(F,\omega)$ reduction. The purpose of this paper is to interpret the result of McDuff using gerbe theory. We define fundamental gerbes in symplectic geometry which allows us to define a 2-gerbe which represents the geometric obstruction to lift ω to P. Using these gerbes, we define a geometric quantization of symplectic manifolds.

- 1. Introduction. A symplectic fibration $P \to N$ is a differentiable fibration whose typical fiber is the closed connected symplectic manifold (F,ω) , and such that there exists a trivialization (U_i,g_{ij}) , such that $g_{ij}(u)$ is a symplectic automorphism of the fiber over u, endowed with a symplectic structure ω_u , symplectomorphic to (F,ω) . We suppose that the cohomology class $[\omega_u]$ of ω_u is fixed. The theory of symplectic bundles has been studied by different authors, see $[\mathbf{8}, \mathbf{9}, \mathbf{12}, \mathbf{16}]$. One purpose of the paper $[\mathbf{16}]$ is to determine whether the structural group of the symplectic bundle can be reduced to the Hamiltonian group of (F,ω) , that is, whether there exists a symplectic bundle $P' \to N$ isomorphic to P, whose coordinate changes $g'_{ij}(u)$ are Hamiltonian automorphisms of the fiber above u; such a reduction will be called a Hamiltonian structure, or a Ham-reduction. In $[\mathbf{16}]$, it is shown that the existence of such Hamiltonian reductions on a finite cover of N is equivalent to the following two conditions:
- (i) There exists a closed 2-form Ω defined on P whose cohomology class $[\Omega]$ extends $[\omega]$. This means that the restriction to the fiber above u of the cohomology class $[\Omega]$ is the cohomology class $[\omega]$. Following McDuff, we will call the form Ω a closed connection form.
- (ii) Let Symp $(F, \omega)_0$ be the connected component of the group of symplectomorphisms Symp (F, ω) , of (F, ω) . The symplectic bundle is

Received by the editors on September 8, 2005, and in revised form on October 5, 2005.

 $DOI:10.1216/RMJ-2008-38-3-727 \quad Copyright © 2008 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Mat$