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ABSTRACT. Let Q be a bounded subset of RN with
smooth boundary 99 in C%, a € C4(Q) with @ > 0 in Q, and
let A be the fourth order operator defined by Au := A(aAu),
respectively Au := B%u, where Bu := V-(aVu)), with general
Wentzell boundary condition of the type

d(alAu)

Au+p o

+yu=0 on 01,

O(Bu)
on

<respectively Au+ B +yu =0 on 89) .

We prove that, under additional boundary conditions, if 3,v €
C3te(0Q), B > 0, then the realization of the operator A on
a suitable Hilbert space of L2 type, with a suitable weight on
01, is essentially self-adjoint and bounded below.

0. Introduction. Consider problems involving the Laplacian A on
a smooth bounded domain Q in R". The usual boundary conditions
are of Robin type, i.e.,

Oou

where (8(z),7(z)) is a nonzero vector for each € 02, the boundary
of 2, and n is the unit outer normal to 9Q. But by working in C'(£2)
rather than in LP(Q) one can use Wentzell boundary conditions of the
form

aAu+,3§—Z+7u:0,

where (a(z), B(z),v()) is a nonzero vector in R? for each x in Q. The
resolvent equation Au — Au = h on the boundary cannot distinguish
between u = 0 on 02 and Au = 0 on 92 when h = 0 on 9€2; such
functions h are dense in L%(2) but not in C(£2). In the previous work
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