FOURTH ORDER OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONS

ANGELO FAVINI, GISÈLE RUIZ GOLDSTEIN, JEROME A. GOLDSTEIN AND SILVIA ROMANELLI

ABSTRACT. Let Ω be a bounded subset of \mathbf{R}^N with smooth boundary $\partial\Omega$ in C^4 , $a\in C^4(\overline{\Omega})$ with a>0 in $\overline{\Omega}$, and let A be the fourth order operator defined by $Au:=\Delta(a\Delta u)$, respectively $Au:=B^2u$, where $Bu:=\nabla\cdot(a\nabla u)$), with general Wentzell boundary condition of the type

$$\begin{split} Au+\beta\frac{\partial(a\Delta u)}{\partial n}+\gamma u&=0\quad\text{on}\quad\partial\Omega,\\ \left(\text{respectively }Au+\beta\frac{\partial(Bu)}{\partial n}+\gamma u&=0\quad\text{on}\quad\partial\Omega\right). \end{split}$$

We prove that, under additional boundary conditions, if $\beta, \gamma \in C^{3+\varepsilon}(\partial\Omega)$, $\beta>0$, then the realization of the operator A on a suitable Hilbert space of L^2 type, with a suitable weight on $\partial\Omega$, is essentially self-adjoint and bounded below.

0. Introduction. Consider problems involving the Laplacian Δ on a smooth bounded domain Ω in \mathbf{R}^N . The usual boundary conditions are of Robin type, i.e.,

 $\beta \frac{\partial u}{\partial n} + \gamma u = 0,$

where $(\beta(x), \gamma(x))$ is a nonzero vector for each $x \in \partial\Omega$, the boundary of Ω , and n is the unit outer normal to $\partial\Omega$. But by working in $C(\overline{\Omega})$ rather than in $L^p(\Omega)$ one can use Wentzell boundary conditions of the form

$$\alpha \Delta u + \beta \frac{\partial u}{\partial n} + \gamma u = 0,$$

where $(\alpha(x), \beta(x), \gamma(x))$ is a nonzero vector in \mathbf{R}^3 for each x in $\partial\Omega$. The resolvent equation $\Delta u - \lambda u = h$ on the boundary cannot distinguish between u = 0 on $\partial\Omega$ and $\Delta u = 0$ on $\partial\Omega$ when h = 0 on $\partial\Omega$; such functions h are dense in $L^2(\Omega)$ but not in $C(\overline{\Omega})$. In the previous work

Received by the editors on April 28, 2005, and in revised form on December 7, 2005.

DOI:10.1216/RMJ-2008-38-2-445 Copyright © 2008 Rocky Mountain Mathematics Consortium