MIXED MODULES IN L*

R. GÖBEL AND B. GOLDSMITH

ABSTRACT. By assuming the set-theoretic hypothesis V = L we show that, for a large class of rings R, there exist, for any regular not weakly compact cardinals κ , strongly κ -cyclic mixed R-modules having endomorphism algebra isomorphic to the split extension of the R-algebra A by the ideal of bounded endomorphisms provided A is free quâ R-module and $\kappa > |A|$.

1. Introduction. In this paper we deal with endomorphism algebras $E_R(G)$ of certain mixed *R*-modules *G* in the universe V = L. We shall always assume that *R* is a non-zero commutative ring with 1, with a given countable multiplicatively closed subset *S* of non-zero divisors. Let *A* be any fixed *R*-algebra which is *S*-reduced and *S*-torsion-free. (These and related concepts are defined in §2.) It has been established, working only in ZFC, that inter alia the following realization theorem holds; see [1] and [2].

THEOREM. If A is an S-reduced, S-torsion-free R-module then there exists a mixed R-module G with $E_R(G) = A \oplus Bd(G)$. (Here and throughout the paper Bd(G) will denote the ideal of bounded endomorphisms of G; $\phi \in Bd(G)$ if and only if there is an $s \in S$ with $(G\phi)s = 0$.)

Indeed the results can be extended to derive arbitrarily large rigid systems and semi-rigid proper classes (i.e., classes which are not sets.) Assuming V = L we can sharpen these results considerably by imposing only slightly stronger conditions on the algebra A. In this context cyclic A-modules will either be copies of A or torsion A-modules A/sAfor some $s \in S$. Recall that, in general, a module is said to be Σ cyclic if it is a direct sum of cyclic modules. Observe that Σ -cyclic modules are reduced. A module is κ -cyclic, for some cardinal κ , if any

This paper was written under contract SC115/84 from the National Board for Science and Technology (Ireland).

Received by the editors on May 28, 1986, and in revised form on February 9, 1987.

AMS Subject classification: 20K30, 20K21.