STABILITY IN WITT RINGS AND ABELIAN SUBGROUPS OF PRO-2-GALOIS GROUPS

ROGER WARE

Let F denote a field of characteristic not two, let $F(2)$ be the maximal 2-extension (i.e., quadratic closure) of F, and let $G_{F}(2)=$ $\operatorname{Gal}(F(2) / F)$. In this note we introduce and study an invariant, $a(F)$, of F defined to be the largest integer m such that $G_{F}(2)$ has a closed torsion free abelian subgroup of rank m. [If there is no largest m, we define $a(F)=\infty]$. Recall that the (absolute) stability index of F, introduced in [5], is st $(F)=\min \left\{n \mid I^{n+1} F=2 I^{n} F\right\}$, where $I F$ is the fundamental ideal of even dimensional forms in the Witt ring, WF, of anisotropic quadratic forms over F and $I^{n} F$ is the $n^{\text {th }}$ power of this ideal. The connection between $a(F)$ and $\operatorname{st}(F)$ will be investigated and it will be shown that if F is a pythagorian field or a finitely generated extension of a hereditarily euclidean or hereditarily quadratically closed base field, then $a(F)=\mathrm{st}(F)$. First we present a few examples.

Examples. (1). $a(F)=0$ if and only if F is either euclidean (i.e., formally real with $\left|\dot{F} / \dot{F}^{2}\right|=2$) or quadratically closed if and only if $F(\sqrt{-1})$ is quadratically closed.
(2). If F is a finite, local, or global field, then $a(F)=1$.
(3). Let F be a rigid field (i.e., every element $a \notin \pm \dot{F}^{2}$ satisfies $F^{2}+a F^{2} \subseteq F^{2} \cup a F^{2}$) with $\left|\dot{F} / \dot{F}^{2}\right|=2^{m}>2$. Then $a(F)=m$ if and only if F is nonreal and $F(\sqrt{-1})$ contains all 2-power roots of unity: $a(F)=m-1$, otherwise. Special cases: $a\left(\mathbf{R}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{m}\right)\right)\right)=$ $a\left(\mathbf{C}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{m}\right)\right)=a\left(\mathbf{F}_{p}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{m}\right)\right)\right)=m\right.$.
(4). If $F=\mathbf{R}\left(t_{1}, \ldots, t_{n}\right)$ or $\mathbf{C}\left(t_{1}, \ldots, t_{n}\right)$, then $a(F)=n$.

Proof. (1) is clear and (4) will follow from Theorem 3.
(2). This is clear if F is finite. If F is local or global it can be proved using standard algebraic number theory (cf. [8] for a corresponding result for the absolute Galois group). We give an argument that uses

