ON THE ANALYTICITY OF THE HOMOLOGY

ALBERTO TOGNOLI

Introduction. Let W be a real analytic manifold and $\{\alpha\} \in H_P(W, \mathbb{Z}_2)$. We shall say that $\{\alpha\}$ is analytic if there exists a compact analytic subset S of W such that: $\{\alpha\} = (\text{fundamental class of } S)$. The purpose of this short paper is to prove

THEOREM 1. Let W be a paracompact real analytic manifold. Then any homology class $\{\alpha\} \in H_P(W, \mathbb{Z}_2)$ is analytic.

We remark that a similar result fails to hold in the real algebraic case (see [2]).

1. Definitions and well known facts. Let V, W be two differentiable (i.e., \mathbb{C}^{∞}) manifolds. Then, on the set M(V, W) of differentiable maps $f: V \to W$, we shall consider the Whitney topology (see [5, p. 42]).

In the following we shall use the known result: if $f \in M(V, W)$, then there exists a neighborhood U, in the \mathbb{C}^{O} topology, of f such that any $g \in U$ is homotopic to f (see [7]).

By a real algebraic variety we shall mean an affine real algebraic variety. A regular variety will be called an algebraic manifold. An algebraic map is the restriction of a rational map.

In the following we shall need

LEMMA 1. Let $V \subset \mathbf{R}^n, W \subset \mathbf{R}^q$ be two real algebraic manifolds and $V \xrightarrow{\varphi} W$ be a differentiable map. If V is compact and bordant to ϕ , then, for any $\varepsilon > 0$, there exists an algebraic submanifold $V' \subset \mathbf{R}^{n+q}$, an analytic isomorphism $V' \xrightarrow{\pi} V$ and an algebraic map $\varphi' : V' \to W$ such that:

Previously published in Proc. Amer. Math. Soc. Vol 104 (1988) no. 3, 920-922. Copyright ©1989 Rocky Mountain Mathematics Consortium