PROPER EMBEDDING INTO A UNIT LATTICE

YOSHIO MIMURA

0. Introduction. An n-dimensional quadratic lattice is a free module of rank n over the rational integer ring \mathbf{Z} , which is endowed with a symmetric bilinear form B. Let E_n be a unit lattice, that is an n-dimensional quadratic lattice which has an orthonormal basis with respect to B, i.e.,

$$E_n = \mathbf{Z}e_1 + \cdots + \mathbf{Z}e_n, \quad B(e_i, e_j) = \delta_{ij},$$

where δ_{ij} is the Kronecker delta. Let A be a positive integer. A sublattice F of E_n is an r-frame of scale A if

$$F = \mathbf{Z}f_1 + \cdots + \mathbf{Z}f_r, \quad B(f_i, f_j) = A\delta_{ij}.$$

A frame F in E_n is proper if $B(F, e_j) \neq \{0\}$ for each j. In this situation we have a problem:

(*) When does E_n contain a proper r-frame of scale A?

We shall give a complete answer in the case of r = 2. Why proper? The Siegel Mass Formula can answer the question: When does E_n contain an r-frame of scale A?

This problem leads to diophantine equations in the following:

(#) E_n contains a proper 1-frame of scale A if and only if there are integers x_1, \ldots, x_n in **Z** satisfying

$$x_1^2 + \dots + x_n^2 = A, \quad x_1 \neq 0, \dots, x_n \neq 0;$$

(##) E_n contains a proper 2-frame of scale A if and only if there are integers $x_1, \ldots, x_n, y_1, \ldots, y_n$ in **Z** satisfying

$$x_1^2 + \dots + x_n^2 = y_1^2 + \dots + y_n^2 = A, \quad x_1 y_1 + \dots + x_n y_n = 0,$$

 $x_1 \neq 0 \text{ or } y_1 \neq 0, \dots, x_n \neq 0 \text{ or } y_n \neq 0.$

Received by the editors on October 1, 1986.

Copyright ©1989 Rocky Mountain Mathematics Consortium