THE REPRESENTATION THEOREM FOR SPACES OF SIGNATURES

MURRAY MARSHALL AND COLM MULCAHY

As shown in [6], there is a commutative diagram of form theories and generalization maps as follows:

On the left we have the reduced theory of quadratic forms over fields, along with Becker and Rosenberg's extension to a reduced higher level form theory [2]. The abstract theory of Spaces of Orderings [5] facilitates a unified treatment of reduced quadratic forms over fields, skew fields and semi-local rings. The higher level theory can also be carried out over skew fields [8], and Spaces of Signatures [6, 7] allow for a simultaneous generalization of all of these theories.

Associated to each Space of Signatures (X, G) is a reduced Witt ring W(X), which embeds naturally in a ring of continuous functions $C(X, \mathbb{C})$. The problem of characterizing this subring of $C(X, \mathbb{C})$ was solved in [7], under a restrictive 2-power assumption, by extending the representation theorems of [1, 2, 4] and [5]. In this note we explain how this may be done for any Spaces of Signatures, without the 2-power assumption. Detailed proofs will appear in a forthcoming paper.

Let G be an abelian group of finite (even) exponent, and set $G^* = \text{Hom}_{\mathbf{Z}}(G,\mu)$, with the usual compact-open topology (μ being the complex roots of unity, with the discrete topology). Fix a nonempty subset X of G^* . An m-dimensional form f is an m-tuple $\langle a_1, \ldots, a_m \rangle \langle a_i \in G \rangle$. The notions of equivalence, isometry, isotropy, represented sets, and sums of forms are defined just as for Spaces of Orderings (see [**6**]).

DEFINITION. (X, G) is a Space of Signatures when these axioms hold: S_0 : If $\sigma \in X$, then $\sigma^k \in X$ for all odd k. Copyright ©1989 Rocky Mountain Mathematics Consortium