ON THE CLIFFORD-LITTLEWOOD-ECKMANN GROUPS: A NEW LOOK AT PERIODICITY mod 8

T.Y. LAM ${ }^{(*)}$ AND TARA SMITH

1. The Groups $\mathbf{G}_{\mathbf{s}, \mathbf{t}}$: an historical survey. For any pair of nonnegative integers s and t, let $G_{s, t}$ denote the group generated by the symbols $\varepsilon, a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}$ with the following relations:

$$
\left\{\begin{array}{l}
(1) \epsilon^{2}=1, a_{i}^{2}=\epsilon(\forall i), b_{j}^{2}=1, \quad \forall j, \\
(2) a_{i} b_{j}=\epsilon b_{j} a_{i}, \quad \forall i, j, \\
(3) a_{i} a_{j}=\epsilon a_{j} a_{i}, \quad i \neq j, \tag{1.1}\\
(4) \quad b_{i} b_{j}=\epsilon b_{j} b_{i}, \quad i \neq j, \\
(5) \quad \epsilon b_{j}=b_{j} \epsilon, \quad \forall j .
\end{array}\right.
$$

Here, the relations in (5) are needed only in the special case $(s, t)=$ $(0,1)$. For, as long as $s+t \geq 2$, it is easy to show that these relations follow from the others. In the case $(s, t)=(0,1)$, the inclusion of the relation $\epsilon b_{1}=b_{1} \epsilon$ ensures that $G_{0,1}$ is the group $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ (and not the free product $\mathbf{Z}_{2} * \mathbf{Z}_{2}$ which is the infinite dihedral group). Thus, in all cases, ϵ is a central element of order 2 in $G_{s, t}$. Intuitively, we think of the element ϵ as " -1 ", and refer to the relations (2), (3) and (4) above by saying that the elements $\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}$ "pairwise anticommute". It is easy to see that any element of the group $G_{s, t}$ can be written uniquely in the form $\epsilon^{k} a_{i_{1}} \cdots a_{i_{m}} b_{j_{1}} \cdots b_{j_{n}}$, where $1 \leq i_{1}<\cdots<i_{m} \leq s, 1 \leq j_{1}<\cdots<j_{n} \leq t$ and $k \in\{0,1\}$. Thus, $G_{s, t}$ is a finite group of cardinality 2^{r+1} where $r:=s+t$.

The groups $G_{s, t}$ are implicit in Clifford's work on "geometric algebras" [4, pp. 398-399]. In fact, if $C\left(\varphi_{s, t}\right)$ denotes the Clifford algebra of the quadratic form $\varphi_{s, t}:=s\langle-1\rangle \perp t\langle 1\rangle$ over any field of characteristic not 2 , then $G_{s, t}$ appears naturally as a subgroup of the group of units in this Clifford algebra. Some of the groups $G_{s, t}$ are of interest to physicists. In the study of the spin of the electron, the commutation relations between angular momentum operators led to the consideration

[^0]
[^0]: Supported by NSF.
 Received by the editors on October 8, 1987.
 Copyright © 1989 Rocky Mountain Mathematics Consortium

