ORTHOGONAL DECOMPOSITIONS OF INDEFINITE QUADRATIC FORMS

DONALD G. JAMES

Introduction. A well known theorem of Milnor (see [8] or [9]) classifies the unimodular indefinite quadratic forms over Z. Either the form represents both even and odd numbers, in which case the form diagonalizes as $\langle \pm 1, \ldots, \pm 1\rangle$; or the form only represents even numbers, in which case it decomposes into an orthogonal sum of hyperbolic planes and 8-dimensional unimodular definite forms. We give here some generalizations of this theorem for indefinite forms with square free discriminant of rank at least three.

Let L be a Z-lattice on an indefinite regular quadratic \mathbf{Q}-space V of finite dimension $n \geq 3$ with associated symmetric bilinear form $f: V \times V \rightarrow \mathbf{Q}$. Assume, for convenience, that $f(L, L)=\mathbf{Z}$ and that the signature $s=s(L)$ of the form is non-negative. Let x_{1}, \ldots, x_{n} be a Z-basis for L and put $d=d L=\operatorname{det} f\left(x_{i}, x_{j}\right)$, the discriminant of the lattice L. We assume that d is square free. Let $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ denote the \mathbf{Z}-lattice $\mathbf{Z} x_{1} \perp \cdots \perp \mathbf{Z} x_{n}$ with an orthogonal basis where $f\left(x_{i}\right)=f\left(x_{i}, x_{i}\right)=a_{i}, 1 \leq i \leq n$. Most of our notation follows O'Meara [7]. Thus L_{p} denotes the localization of L at the prime p.

The lattice L is called even if $f(x) \in 2 \mathbf{Z}$ for all $x \in L$; otherwise the lattice is odd. The condition that L is an odd lattice is equivalent to the local condition that L_{2} diagonalizes over the 2-adic integers (since d is not divisible by 4).

Odd lattices. While not all odd indefinite lattices have an orthogonal basis, we can get very close to this.

Theorem 1. Let L be an odd indefinite Z-lattice of rank $n \geq 3$ with square free discriminant d. Then

$$
L=\langle \pm 1, \ldots, \pm 1\rangle \perp B
$$

