EVEN POSITIVE DEFINITE UNIMODULAR QUADRATIC FORMS OVER REAL QUADRATIC FIELDS

J.S. HSIA

In spite of the numberous connections between even positive definite unimodular quadratic forms (henceforth referred to as even unimodular lattices) over **Q** with other subjects (e.g., finite group theory, geometry of numbers, combinatorial coding and design theories, automorphic functions, the explicit classification of these lattices has only been fully determined for a few cases, the most celebrated of them being undoubtedly the Leech-Niemeier-Witt [4] solution for the 24-dimensional **Z**-lattices. We discuss here some results on the classification of even unimodular lattices over some real quadratic number fields.

Let $F = \mathbf{Q}(\sqrt{p})$, p a prime, R = int(F), $d = d_F$ the field discriminant, and $e = e_F$ the fundamental unit. Let the rank of such an R-lattice be m. Then, m is even. If $p \equiv 3 \pmod{4}$, write p = -1 + 4t, t > 0. Clearly,

$$\begin{bmatrix} 2 & \sqrt{p} \\ \sqrt{p} & 2t \end{bmatrix}$$

defines a binary even unimodular lattice over F. On the other hand, if $p \equiv 1 \pmod{4}$ then it is not difficult to see from the local dyadic structures of the lattices that m must satisfy $m \equiv 0 \pmod{4}$. The same holds for p = 2.

I. Analytic mass formula. One way to get a crude estimate for the class number of such lattices is via Siegel's anlytic mass formula. Let $M_m(F)$ be the Minkowski-Siegel mass of the genus of an R-lattice over F of rank $m \equiv 0 \pmod{2}$ and determinant +1. One then has the following formula whose proof is analogous to that given in [1] for $\mathbb{Q}(\sqrt{5})$.