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1. Introduction and terminology. We will follow mainly the
notation and terminology set up in [2]. Thus (R,GRg, Bgr,qr) is an
abstract Witt ring as defined in [4] and recall that ¢gg : Gr X Gg — Bg
is a symmetric bilinear mapping with Gg and By being groups of
exponent 2. Gg has a distinguished element —1 satisfying g(a, —a) =1,
and gp satisfies

For all a,b,c,d € Gg,qr(a,b) = qr(c,d) implies

there exists x € G with gg(a,b) = qr(a, )
(L) = qR(ca :E) = QR(cv d)
Denote by Qg the image of qg in Bg and when there is no confusion
write G = Ggr, B = Br, q = qgr and Q = Qgr. For a € Qg set

Q(a) = {q(a,z)|z € Gr}. Yg will denote the collection {Q(a)|a €
Gg\{1}} and {Q;}?, is the collection of distinct elements of Y. For
a subgroup of @ of BR, the subgroup {r € Gr|Q(z) C Q} of Gg will
be denoted by H(Q). We let H; = H(Q;) and h; = |H;|. The value set
of (1,z) is D(1,z) = {y € Gr|q(—z,y) = 1}, and, for any subgroup K
of G, let K denote K\{1}. Finally set g = |GR|.

In §2 construct a quotient quaternionic mapping g and give some
technical conditions under which g satisfies (L). This quotient tech-
nique together with the counting technique of [2], proves to be quite
useful in §3 where we classify Witt rings having a simple Hasse dia-
gram. Specifically, we generalize Cordes’ classification [1] of Witt rings
with < 4 quaternion algebras by classifying all non-degenerate Witt
rings with |Yg| < 4 (See [3;Chapter 5, §10]) for a statement and proof
of Cordes’ classification using the notation and terminology used here.)

2. Quotients. Let R be an arbitrary abstract Witt ring with
associated linked quaternionic mapping q : Gg X Gg — Bg. For an
arbitrary subgroup Q of Bg set H = H(Q) and define § : Gg/H x
Ggr/H — Bgr/Q by 4(a,b) = q(a,b)Q, where @ = aH.

Copyright ©1989 Rocky Mountain Mathematics Consortium

687



