COMBINATORIAL TECHNIQUES AND ABSTRACT WITT RINGS II

ROBERT FITZGERALD AND JOSEPH YUCAS

1. Introduction and terminology. We will follow mainly the notation and terminology set up in [2]. Thus $\left(R, G_{R}, B_{R}, q_{R}\right)$ is an abstract Witt ring as defined in [4] and recall that $q_{R}: G_{R} \times G_{R} \rightarrow B_{R}$ is a symmetric bilinear mapping with G_{R} and B_{R} being groups of exponent 2. G_{R} has a distinguished element -1 satisfying $q(a,-a)=1$, and q_{R} satisfies

$$
\begin{align*}
& \text { For all } a, b, c, d \in G_{R}, q_{R}(a, b)=q_{R}(c, d) \text { implies } \\
& \text { there exists } x \in G_{R} \text { with } \begin{aligned}
q_{R}(a, b) & =q_{R}(a, x) \\
& =q_{R}(c, x)=q_{R}(c, d) .
\end{aligned}
\end{align*}
$$

Denote by Q_{R} the image of q_{R} in B_{R} and when there is no confusion write $G=G_{R}, \quad B=B_{R}, \quad q=q_{R}$ and $Q=Q_{R}$. For $a \in Q_{R}$ set $Q(a)=\left\{q(a, x) \mid x \in G_{R}\right\} . Y_{R}$ will denote the collection $\{Q(a) \mid a \in$ $\left.G_{R} \backslash\{1\}\right\}$ and $\left\{Q_{i}\right\}_{i=1}^{n}$ is the collection of distinct elements of Y_{R}. For a subgroup of Q of B_{R}, the subgroup $\left\{x \in G_{R} \mid Q(x) \subseteq Q\right\}$ of G_{R} will be denoted by $H(Q)$. We let $H_{i}=H\left(Q_{i}\right)$ and $h_{i}=\left|H_{i}\right|$. The value set of $\langle 1, x\rangle$ is $D\langle 1, x\rangle=\left\{y \in G_{R} \mid q(-x, y)=1\right\}$, and, for any subgroup K of G_{R}, let \dot{K} denote $K \backslash\{1\}$. Finally set $g=\left|G_{R}\right|$.

In $\S 2$ construct a quotient quaternionic mapping \bar{q} and give some technical conditions under which \bar{q} satisfies (L). This quotient technique together with the counting technique of [2], proves to be quite useful in $\S 3$ where we classify Witt rings having a simple Hasse diagram. Specifically, we generalize Cordes' classification [1] of Witt rings with ≤ 4 quaternion algebras by classifying all non-degenerate Witt rings with $\left|Y_{R}\right| \leq 4$ (See $[\mathbf{3}$;Chapter $5, \S 10]$) for a statement and proof of Cordes' classification using the notation and terminology used here.)
2. Quotients. Let R be an arbitrary abstract Witt ring with associated linked quaternionic mapping $q: G_{R} \times G_{R} \rightarrow B_{R}$. For an arbitrary subgroup Q of B_{R} set $H=H(Q)$ and define $\bar{q}: G_{R} / H \times$ $G_{R} / H \rightarrow B_{R} / Q$ by $\bar{q}(\bar{a}, \bar{b})=q(a, b) Q$, where $\bar{a}=a H$.

