COMBINATORIAL TECHNIQUES AND ABSTRACT WITT RINGS II

ROBERT FITZGERALD AND JOSEPH YUCAS

1. Introduction and terminology. We will follow mainly the notation and terminology set up in [2]. Thus (R, G_R, B_R, q_R) is an abstract Witt ring as defined in [4] and recall that $q_R: G_R \times G_R \to B_R$ is a symmetric bilinear mapping with G_R and B_R being groups of exponent 2. G_R has a distinguished element -1 satisfying q(a, -a) = 1, and q_R satisfies

For all
$$a, b, c, d \in G_R$$
, $q_R(a, b) = q_R(c, d)$ implies
there exists $x \in G_R$ with $q_R(a, b) = q_R(a, x)$
(L) $= q_R(c, x) = q_R(c, d).$

Denote by Q_R the image of q_R in B_R and when there is no confusion write $G = G_R$, $B = B_R$, $q = q_R$ and $Q = Q_R$. For $a \in Q_R$ set $Q(a) = \{q(a,x) \mid x \in G_R\}$. Y_R will denote the collection $\{Q(a) \mid a \in Q(a) \mid x \in G_R\}$. $G_R \setminus \{1\}\}$ and $\{Q_i\}_{i=1}^n$ is the collection of distinct elements of Y_R . For a subgroup of Q of B_R , the subgroup $\{x \in G_R \mid Q(x) \subseteq Q\}$ of G_R will be denoted by H(Q). We let $H_i = H(Q_i)$ and $h_i = |H_i|$. The value set of $\langle 1, x \rangle$ is $D\langle 1, x \rangle = \{y \in G_R \mid q(-x, y) = 1\}$, and, for any subgroup K of G_R , let K denote $K \setminus \{1\}$. Finally set $g = |G_R|$.

In §2 construct a quotient quaternionic mapping \overline{q} and give some technical conditions under which \overline{q} satisfies (L). This quotient technique together with the counting technique of [2], proves to be quite useful in §3 where we classify Witt rings having a simple Hasse diagram. Specifically, we generalize Cordes' classification [1] of Witt rings with ≤ 4 quaternion algebras by classifying all non-degenerate Witt rings with $|Y_R| \leq 4$ (See [3;Chapter 5, §10]) for a statement and proof of Cordes' classification using the notation and terminology used here.)

2. **Quotients.** Let R be an arbitrary abstract Witt ring with associated linked quaternionic mapping $q: G_R \times G_R \to B_R$. For an arbitrary subgroup Q of B_R set H = H(Q) and define $\overline{q} : G_R/H \times$ $G_R/H \to B_R/Q$ by $\overline{q}(\overline{a}, \overline{b}) = q(a, b)Q$, where $\overline{a} = aH$. Copyright @1989 Rocky Mountain Mathematics Consortium