NASH FUNCTIONS AND THE STRUCTURE SHEAF

FELIPE CUCKER

Let **R** be a real closed field and $U \subset \mathbf{R}^n$ an open semialgebraic (s.a.) set. A Nash function over U is a function of class C^{∞} and s.a. If $\mathbf{R} = \mathbf{R}$, this definition agrees with the usual one [1, Chapter 8].

If $A = \mathbf{R}[X_1, \dots, X_n]$ and \tilde{U} is the constructible set in Spec_rA associated to U, the ring of Nash functions over U is canonically isomorphic to the ring $\mathcal{N}_A(U)$ of global sections over U of the structure sheaf of Spec $_{r}A$. This is a consequence of the Artin-Mazur description of Nash functions and the behavior of the operator \sim . For this result and other basic properties of the structure sheaf see M.-F. Roy's article **[8**].

Now, let $V \subset \mathbf{R}^n$ be an algebraic variety (not necessarily smooth) and let A be its coordinate ring. In the above quoted article, we observe that if N_V is the sheaf obtained by restriction and identification of elements of $\mathcal{N}_{R[X_1,\ldots,X_n]}$ over Spec $_rA$, this sheaf does not necessarily coincide with \mathcal{N}_A . Moreover, an example of a variety for which these sheaves differ is given, the study of the relationship between them is proposed and it is conjectured (for $\mathbf{R} = \mathbf{R}$) that the set of points of V, for which the stalks of both sheaves are isomorphic, is the set of quasi-regular points of V in Tognoli's sense.

To answer these questions, our first results are the following theorems.

THEOREM 1. ([2, II. 1.5]. or [3, 1.7]) For every $\alpha \in \operatorname{Spec}_r A$ the stalk $N_{V,\alpha}$ is naturally isomorphic to $\mathcal{N}_{A,\alpha}/\mathrm{rad}_r(0)$.

THEOREM 2. ([2, II. 2.1.], or [3, 2.1]) Let $x \in V$. The following statements are equivalent:

(i) x is quasi-regular (i.e., the complexification of the Nash germ V_x coincides with the complex Nash germ at x of the algebraic complexification V_c of V);

Partially supported by C.A.I.C. y T. 2280/83. Copyright @1989 Rocky Mountain Mathematics Consortium