THE BEHAVIOR OF THE ν-INVARIANT OF A FIELD OF CHARACTERISTIC 2 UNDER FINITE EXTENSIONS

R. ARAVIRE AND R. BAEZA

Abstract

Let F be a field of characteristic 2. We define $\nu(F)$ as the smallest integer n such that any n-fold quadratic Pfister form over F is isotropic. If L / F is any finite extension, we prove $\nu(F) \leq \nu(L) \leq \nu(F)+1$. The corresponding question for fields of characteristic $\frac{1}{T} 2$ is still open.

1. Introduction. The ν-invariant of a field F of characteristic $\frac{1}{T} 2$ was introduced in [2] as the number $\nu(F)=\operatorname{Min}\left\{n \mid I^{n}(F)\right.$ is torsion free\}, where $I(F)$ denotes the maximal ideal of even dimensional quadratic forms over F in the Witt ring $W(F)$. If F is non real, then $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic. Similarly, if F is a field of characteristic 2, let $W_{q}(F)$ be the Witt group of non singular quadratic forms over F and $W(F)$ the Witt ring of non singular symmetric bilinear forms over F. It is well known that $W_{q}(F)$ is a $W(F)$-module under the operation $b \cdot q(x \otimes y)=b(x, x) q(y)$ for any $x \in V=$ space of the bilinear form $b, y \in W=$ space of the quadratic form q. If $I(F) \subset W(F)$ is the maximal ideal of even-dimensional bilinear forms, then the chain of submodules $W_{q}(F) \supset I W_{q}(F) \supset I^{2} W_{q}(F) \supset \cdots$ plays an important role in the knowledge of the module structure of $W_{q}(F)$. If $a_{1}, \ldots, a_{n} \in F^{*}, b \in F$, then the quadratic n-fold Pfister form $\left\langle 1, a_{1}\right\rangle \ldots\left\langle 1, a_{n}\right\rangle[1, b]$ is a typical generator of $I^{n} W_{q}(F)$, where $\langle 1, a\rangle$ denotes the symmetric bilinear form $U^{2}+a V^{2}$ and $[1, b]$ denotes the quadratic form $X^{2}+X Y+b Y^{2}$. We shall usually write $\left\langle\left\langle a_{1}, \cdots, a_{n}, b\right]\right]$ instead of $\left\langle 1, a_{1}\right\rangle \cdots\left\langle 1, a_{n}\right\rangle[1, b]$. (We refer to $[\mathbf{1}, \mathbf{3}]$ for general facts on quadratic forms in characteristic 2). We define now, as in [2], the ν-invariant of a field F of characteristic 2 as

$$
\begin{equation*}
\nu(F)=\operatorname{Min}\left\{n \mid I^{n} W_{q}(F)=0\right\} \tag{1.1}
\end{equation*}
$$

i.e., $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic.

[^0]
[^0]: Supported partially by CHI-84-004, PNUD and FONDECYT.
 Received by the editors on October 29, 1986 and in revised form on April 15, 1987.

