THE BEHAVIOR OF THE ν -INVARIANT OF A FIELD **OF CHARACTERISTIC 2 UNDER FINITE EXTENSIONS**

R. ARAVIRE AND R. BAEZA

ABSTRACT. Let F be a field of characteristic 2. We define $\nu(F)$ as the smallest integer n such that any n-fold quadratic Pfister form over F is isotropic. If L/F is any finite extension, we prove $\nu(F) \leq \nu(L) \leq \nu(F) + 1$. The corresponding question for fields of characteristic $\neq 2$ is still open.

1. Introduction. The ν -invariant of a field F of characteristic $\neq 2$ was introduced in [2] as the number $\nu(F) = \text{Min} \{n \mid I^n(F) \}$ is torsion free}, where I(F) denotes the maximal ideal of even dimensional quadratic forms over F in the Witt ring W(F). If F is non real, then $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic. Similarly, if F is a field of characteristic 2, let $W_q(F)$ be the Witt group of non singular quadratic forms over F and W(F) the Witt ring of non singular symmetric bilinear forms over F. It is well known that $W_q(F)$ is a W(F)-module under the operation $b \cdot q(x \otimes y) = b(x, x)q(y)$ for any $x \in V$ = space of the bilinear form b, $y \in W$ = space of the quadratic form q. If $I(F) \subset W(F)$ is the maximal ideal of even-dimensional bilinear forms, then the chain of submodules $W_q(F) \supset IW_q(F) \supset I^2W_q(F) \supset \cdots$ plays an important role in the knowledge of the module structure of $W_q(F)$. If $a_1, \ldots, a_n \in F^*$, $b \in F$, then the quadratic *n*-fold Pfister form $\langle 1, a_1 \rangle \dots \langle 1, a_n \rangle [1, b]$ is a typical generator of $I^n W_q(F)$, where $\langle 1, a \rangle$ denotes the symmetric bilinear form $U^2 + aV^2$ and [1,b] denotes the quadratic form $X^2 + XY + bY^2$. We shall usually write $\langle \langle a_1, \cdots, a_n, b \rangle$ instead of $\langle 1, a_1 \rangle \cdots \langle 1, a_n \rangle [1, b]$. (We refer to [1, 3] for general facts on quadratic forms in characteristic 2). We define now, as in [2], the ν -invariant of a field F of characteristic 2 as

(1.1)
$$\nu(F) = \operatorname{Min} \{ n \, | \, I^n W_q(F) = 0 \},$$

i.e., $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic.

Supported partially by CHI-84-004, PNUD and FONDECYT. Received by the editors on October 29, 1986 and in revised form on April 15, 1987.