MORSE THEORY WITHOUT CRITICAL POINTS

WOLFGANG SMITH

Let X denote an n-dimensional differentiable manifold and $f: X \rightarrow$ R a real-valued differentiable function on X, where "differentiable" means (let us say) C^{∞}. We shall be concerned with the case where f has no critical points, and thus, too, with the case where X is not compact. In place of critical points we will introduce a notion of "critical fibers", and in place of the index we shall assign to each isolated critical fiber a set of "type numbers" m_{p}^{+}for $p=0,1, \ldots, n-1$. Roughly speaking, a critical fiber is one across which the fiber-structure of f suffers a discontinuity, and m_{p}^{+}is a homology measure of that discontinuity on dimension p. Given that f is bounded and has only a finite number of critical fibers, we let M_{p}^{+}denote the sum of the type numbers m_{p}^{+}over all critical fibers. Our main result is that these coefficients satisfy the strong Morse inequalities:

$$
\begin{gathered}
M_{0}^{+} \geq R_{0} \\
M_{1}^{+}-M_{0}^{+} \geq R_{1}-R_{0} \\
M_{n-1}^{+}-M_{n-2}^{+}+\cdots \pm M_{0}^{+}=R_{n-1}-R_{n-2}+\cdots \pm R_{0}
\end{gathered}
$$

where R_{p} denotes the p-dimensional Betti number of X (with respect to a given coefficient module G). We show, moreover, that for $p<n-1$ they constitute in fact a bona fide generalization of the classical Morse inequalities. For, if $h: M \rightarrow R$ denotes a differentiable function on a compact manifold with non-degenerate critical points, and we let X denote the complement of the critical points in M, then our preceding inequalities for $f=h \mid X$ reduce (as will be shown) to the Morse inequalities for h on dimensions $p<n-1$.

1. Basic lemmas. First some notation and terminology. The symbol $H_{p}(X, A)$ will denote the p-dimensional singular homology group of the topological pair (X, A) over some (fixed) coefficient group G. We will say that the pair (X, A) is regular if the inclusion $A \subset X$ induces isomorphisms $H_{p}(A) \approx H_{p}(X)$ for all p. We will need the following elementary fact regarding excisive couples [5]:

Copyright ©1989 Rocky Mountain Mathematics Consortium

