A NOTE ON POSITIVE QUADRATURE RULES

H.J. SCHMID

Abstract

A classical problem in constructive function theory is the characterization of positive quadrature rules by linear combinations of orthogonal polynomials the roots of which determine the nodes of the formula. A complete characterization has been derived by F. Peherstorfer in 1984. In this note a variant to his approach will be discussed. It is the one-dimensional restriction of a characterization of interpolatory cubature formulae which might be of some general interest.

1. Introduction. We denote \mathbf{P} the ring of real polynomials in one variable and by $\mathbf{P}[a, b]$ the restriction of \mathbf{P} to $[a, b] \subseteq \mathbf{R}$. The linear space spanned by $\left\{1, x, x^{2}, \ldots, x^{m}\right\}$ will be denoted by \mathbf{P}_{m}.
Let

$$
I: \mathbf{P}[a, b] \rightarrow \mathbf{R}: f \rightarrow I(f), I(1)=1,
$$

be a strictly positive linear functional, i.e., I is linear and $f \geq 0$ implies $I(f)>0$ for all $f \in \mathbf{P}[a, b], f \frac{1}{\tau} 0$. Thus I represents those functionals usually studied in numerical integration.
We denote by p_{i} the orthogonal polynomials of degree i with respect to I, normalized such that the highest coefficient is 1 , i.e.,

$$
p_{i}=i d^{i}+\sum_{j=0}^{i-1} \alpha_{j} i d^{j}
$$

such that $I\left(f p_{i}\right)=0$ for all $f \in \mathbf{P}_{i-1}$. These polynomials satisfy the recursion formula
(1) $p_{0}=1, p_{1}=i d-\Gamma_{0}, p_{i+1}=\left(i d-\Gamma_{i}\right) p_{i}-\Lambda_{i} p_{i-1}, i=1,2, \ldots$,
where

$$
\Gamma_{0}=I(i d), \Lambda_{0}=1, \Gamma_{i}=\frac{I\left(i d p_{i}^{2}\right)}{I\left(p_{i}^{2}\right)}, \Lambda_{i}=\frac{I\left(p_{i}^{2}\right)}{I\left(p_{i-1}^{2}\right)}, i=1,2, \ldots
$$

