ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS WITH REGULARLY VARYING RECURRENCE COEFFICIENTS

WALTER VAN ASSCHE ${ }^{1}$ AND JEFFREY S. GERONIMO ${ }^{2}$

1. Introduction. Let $\left\{p_{n}(x) ; n=0,1,2, \ldots\right\}$ be orthogonal polynomials with recurrence relation

$$
\begin{align*}
x p_{n}(x) & =a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x) . \tag{1.1}\\
n & =0,1,2 \ldots, \quad p_{-1}=0, \quad p_{0}=1 .
\end{align*}
$$

We want to investigate the case where the recurrence coefficients a_{n} and b_{n} are unbounded. We will use the notion of regular variation to specify the behavior of a_{n} and b_{n} as n tends to infinity.

Definition. (Seneta [20, p. 46]) A sequence $\left\{c_{n}: n=0,1,2, \ldots\right\}$ is regularly varying at infinity if there exists a sequence $\left\{\lambda_{n}: n=\right.$ $0,1,2, \ldots\}$ such that

$$
\lim _{n \rightarrow x} \frac{c_{n}}{\lambda_{n}}=1
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(\frac{\lambda_{n+1}}{\lambda_{n}}-1\right)=\alpha \tag{1.2}
\end{equation*}
$$

The number α is called the index of regular variation.
One can show that a regularly varying sequence $\left\{c_{n}: n=0,1,2, \ldots\right\}$ with index α can be written as $c_{n}=n^{\alpha} L(n)$ where L is a positive and measurable function on $[0, \infty)$ such that, for every $y>0$,

$$
\lim _{x \rightarrow \infty} \frac{L(x y)}{L(x)}=1
$$

[^0]
[^0]: Received by the editors on February 16,1986 and in revised form on September 9, 1986.
 ${ }^{1}$ Research assistant of the Belgian National Fund for Scientific Research.
 ${ }^{2}$ Supported in part by NSF Grant DMS-860079.

