PROXIMINALITY OF CERTAIN SUBSPACES OF C_b(S; E)

JOÃO B. PROLLA AND ARY O. CHIACCHIO

Throughout this paper, S is a completely regular Hausdorff space and E is a Banach space. The vector space of all continuous and bounded functions $f: S \to E$, denoted by $C_b(S; E)$, is equipped with the supnorm

$$||f|| = \sup\{||f(x)||; x \in S\}.$$

Recall that a closed subpace V of a Banach space E is said to be *proximinal* if every $a \in E$ admits a best approximant from V, i.e., a point $v \in V$ for which

$$||v - a|| = \inf\{||w - a||; w \in V\} = \operatorname{dist}(a; V).$$

The set of best approximants to a from V is denoted by $P_V(a)$, and the set-valued mapping $a \to P_V(a)$ is called the *metric projection*. If V is proximinal, then $a \to P_V(a) \neq \emptyset$ for every $a \in E$. If $P_V(a)$ is a singleton for each $a \in E$, then V is called a *Chebyshev subspace* of E. If V is a proximinal subspace of E, then a map $s : E \to V$ such that s(a) belongs to $P_V(a)$, for each $a \in E$, is called a *metric selection* or a *proximity map* for V.

The following notations are standard and will be used throughout this paper. If $a \in E$ and r > 0, $B(a;r) = \{v \in E; ||v-a|| < r\}$ and $\overline{B}(a;r) = \{v \in E : ||v-a|| \le r\}$. For any $s \in S$, the bounded linear operator $\delta_s : C_b(S; E) \to E$ is defined by $\delta_s(f) = f(s)$, for all $f \in C_b(S; E)$. If W is a closed vector subspace of $C_b(S; E)$, then $\delta_s|W$ denotes the restriction of δ_s to W. Notice that $0 \le ||\delta_s|W|| \le 1$.

Given a proximinal subspace V of a Banach space E, then clearly $C_b(S; V)$ is a closed subspace of $C_b(S; E)$. In this paper we shall study the following questions.

QUESTION 1. Under what assumptions is $C_b(S; V)$ proximinal in $C_b(S; E)$?

Received by the editors on September 16, 1986.

Copyright ©1989 Rocky Mountain Mathematics Consortium