DIVIDED DIFFERENCE OPERATORS AND CLASSICAL ORTHOGONAL POLYNOMIALS

RICHARD ASKEY

Abstract

In an earlier paper J. Wilson and I introduced a divided difference operator that plays the same role for the $4^{\varphi} 3$ orthogonal polynomials that the derivative does for Jacobi polynomials. Here this operator is used to give a new derivation of the connection coefficient result of L.J. Rogers.

1. Introduction. L.J. Rogers introduced a very attractive set of polynomials in [10]. To define them take q fixed with $0<|q|<1$. Set

$$
\begin{equation*}
(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(a ; q)_{n}=(a ; q)_{\infty} /\left(a q^{n} ; q\right)_{\infty} . \tag{1.2}
\end{equation*}
$$

Then, following Rogers (but using a slightly different notation), consider the generating function

$$
\begin{equation*}
\frac{\left(\beta r e^{i \theta} ; q\right)_{\infty}\left(\beta r e^{-i \theta} ; q\right)_{\infty}}{\left(r e^{i \theta} ; q\right)_{\infty}\left(r e^{-i \theta} ; q\right)_{\infty}}=\sum_{n=0}^{\infty} C_{n}(\cos \theta ; \beta \mid q) r^{n} . \tag{1.3}
\end{equation*}
$$

The q-binomial theorem is

$$
\begin{equation*}
\frac{(a r ; q)_{\infty}}{(r ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} r^{n} . \tag{1.4}
\end{equation*}
$$

Using this in (1.3) gives

$$
\begin{align*}
C_{n}(\cos \theta ; \beta \mid q) & =\sum_{k=0}^{n} \frac{(\beta ; q)_{n-k}(\beta ; q)_{k}}{(q ; q)_{n-k}(q ; q)_{k}} e^{i(n-2 k) \theta} \tag{1.5}\\
& =\sum_{k=0}^{n} \frac{(\beta ; q)_{n-k}(\beta ; q)_{k}}{(q ; q)_{n-k}(q ; q)_{k}} \cos (n-2 k) \theta .
\end{align*}
$$

[^0]
[^0]: Supported in part by NSF grant DMS-840071.
 Received by the editors on October 8, 1986.
 Copyright @1989 Rocky Mountain Mathematics Consortium

