SUFFICIENT CONDITIONS FOR ASYMPTOTICS ASSOCIATED WITH WEIGHTED EXTREMAL PROBLEMS ON R

D.S. LUBINSKY¹ AND E.B. SAFF²

DEDICATED TO PROFESSOR A. SHARMA

ABSTRACT. We derive a sufficient condition for asymptotics as $n \to \infty$, for

 $E_{np}(W) := \inf\{||(x^n + P(x))W(x)||_{L_n(\mathbf{R})} : \deg(P) < n\},\$

where 1 , and <math>W(x) is a weight function supported on **R**. This will be used in a forthcoming paper to show that if $W_{\alpha}(x) := \exp(-|x|^{\alpha}), x \in \mathbf{R}, \alpha > 0$, then, for 1 ,

$$\lim_{n\to\infty} E_{np}(W_{\alpha})/\{(\beta_{\alpha}n^{1/\alpha}/2)^{n+1/p}e^{-n/\alpha}\}=2K_p,$$

where β_{α} and K_p are constants depending only on α and p respectively.

1. Introduction. Let W(x) be a measurable function, non-negative in **R**, with all power moments finite, positive on a set of positive measure, and let

$$p_n(W^2; x) = \gamma_n x^n + \cdots, \ \gamma_n > 0,$$

denote the n^{th} orthonormal polynomial for $W^2(x)$ so that, for m, n = 0, 1, 2, ...,

$$\int_{-\infty}^{\infty} p_m(W^2;x) p_n(W^2;x) W^2(x) dx = \delta_{mn}.$$

Recently, Freud's conjecture concerning the asymptotic behaviour of γ_{n-1}/γ_n as $n \to \infty$ for the weight $\exp(-|x|^{\alpha})$ was proved in full

Received by the editors on September 19, 1986.

Copyright ©1989 Rocky Mountain Mathematics Consortium

Research completed while the author was visiting the University of South Florida.
Research supported, in part, by the National Science Foundation.