JACKSON TYPE THEOREMS IN APPROXIMATION BY RECIPROCALS OF POLYNOMIALS

A.L. LEVIN¹ AND E.B. SAFF²

ABSTRACT. It was previously shown by the authors that Jackson type theorems hold for the case of approximating a continuous real-valued function f on a real interval by the *reciprocals* of complex polynomials. In this paper we extend these results to the general case when f is complex-valued.

1. Statement of results. Let $C^*[-\pi,\pi]$ denote the set of 2π -periodic continuous complex-valued functions and let C[-1,1] denote the set of continuous complex-valued functions on [-1,1]. For any $f \in C^*[-\pi,\pi]$ (resp. $f \in C[-1,1]$) we denote by $E_{0n}^*(f)$ (resp. by $E_{0n}(f)$) the error in best uniform approximation of f on $[-\pi,\pi]$ (resp. on [-1,1]) by reciprocals of trigonometric (resp. algebraic) polynomials of degree $\leq n$ with complex coefficients.

Our goal is to prove the following Jackson type theorems.

THEOREM 1. There exists a constant M such that for any $f \in C^*[-\pi,\pi]$,

$$E^*_{0n}(f) \le M\omega(f; n^{-1}), \quad n = 1, 2, 3, \dots,$$

where $\omega(f; \delta)$ denotes the modulus of continuity of f on $[-\pi, \pi]$.

THEOREM 2. There exists a constant M such that, for any $f \in C[-1,1]$,

$$E_{0n}(f) \le M\omega(f; n^{-1}), \quad n = 1, 2, 3, \dots,$$

where $\omega(f; \delta)$ denotes the modulus of continuity of f on [-1,1].

Copyright ©1989 Rocky Mountain Mathematics Consortium

¹ The research of this author was conducted while visiting the Institute for Constructive Mathematics at the University of South Florida.

² The research of this author was supported, in part, by the National Science Foundation.

AMS Subject Classification: 41A20, 41A17.

Received by the editors on September 19, 1986.