BIVARIATE CARDINAL INTERPOLATION ON THE 3-DIRECTION MESH: ${ }^{\text {P}}$-DATA

KLAUS HÖLLIG, MARTIN MARSDEN, AND SHERMAN RIEMENSCHNEIDER

The analogue of the unvariate cardinal spline theory of Schoenberg has been successfully carried out for bivariate box splines on a three direction mesh $[\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}]$. However, there is one result that had eluded us: The convergence theory for bivariate cardinal spline operators from $l^{p}\left(\mathbf{Z}^{2}\right)$ to $L^{p}\left(\mathbf{R}^{2}\right)$. In [5] it was shown that the sequence of univariate cardinal spline interpolants, indexed by degree, has uniformly bounded norm when considered as a sequence of operators from $l^{p}(\mathbf{Z})$ to $L^{p}(\mathbf{R}), 1<p<\infty$, and that these operators converge strongly in $L^{p}(\mathbf{R})$ to the classical Whittaker cardinal series. The analogous result for the bivariate case has been established only in the relatively trivial case $p=2[1]$. The aim of this paper is to complete this result, at least in the case of equal direction multiplicities.
The (centered) box spline M_{n} corresponding to the three directions $e_{1}=(1,0), e_{2}=(0,1), e_{3}=e_{1}+e_{2}=(1,1)$ with equal multiplicities n may be defined by its Fourier transform,

$$
\hat{M}_{n}(x)=\prod_{\nu=1}^{3}\left(\operatorname{sinc}\left(x e_{\nu} / 2\right)\right)^{n}
$$

where $\operatorname{sinc}(t):=\sin t / t$. Thus, M_{n} is the n-fold convolution of the piecewise linear "hat-function" which indicates clearly the connection between box splines and univariate cardinal splines.

It was shown in [3] that the trigonometric polynomial

$$
P_{n}(x):=\sum_{j \in Z^{2}} M_{n}(j) e^{-i j x}=\sum_{j \in Z^{2}} \hat{M}_{n}(x+2 \pi j)
$$

is strictly positive and attains its minimum at $(2 \pi / 3,2 \pi / 3) \bmod 2 \pi \mathbf{Z}^{2}$. This implies that cardinal interpolation with the translates of the

[^0]
[^0]: Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, the International Business Machines Corporation, and National Science Foundation Grant No. DMS-8351187.

 Supported by NSERC Canada through Grant \#A7687.
 Received by the editors on September 5,1986 .
 Copyright ©1989 Rocky Mountain Mathematics Consortium

