ON SOCLES OF ABELIAN P-GROUPS IN L

MANFRED DUGAS AND RENÉ VERGOHSEN

0. Introduction. All groups in this paper are (separable) abelian p-groups. Our notations are standard as in [5]. For set theoretic notations we refer to [2] or [8].

One of the most celebrated results in the theory of *p*-groups is Ulm's Theorem: Each *countable p*-group A is uniquely determined by its socle $A[p] = \{x \in A | px = 0\}$, viewed as a valuated Z/pZ-vectorspace with values induced by the height-function of A.

Since each countable, separable *p*-group is Σ -cyclic (i.e., a direct sum of cyclics), Ulm's Theorem doesn't provide much information in the case of separable *p*-groups. The Σ -cyclic and the torion-complete *p*-groups are the only ones known to be determined by their socles in the class of all separable *p*-groups. If we only want to deal with separable *p*-groups of *cardinality* \aleph_1 , a result due to Hill and Megibben [6] reads as follows:

Assume $2^{\aleph_0} < 2^{\aleph_1}$. If A is neither Σ -cyclic nor torion-complete and A has a *countable* basic subgroup, then there exists a group A' such that A and A' are not isomorphic but the socles A[p] and A'[p] are isometric, i.e., there exists a height-preserving isomorphism $\sigma : A[p] \to A'[p]$.

Assuming that a consequence of Gödel's axiom of constructibility holds, namely, $\Diamond(E)$ for each stationary subset E of \aleph_1 , we will show that one may drop the countability condition in the Hill-Megibben theorem:

THEOREM (V = L). Let A be a separable, abelian p-group of cardinality \aleph_1 . If A is neither Σ -cyclic nor torion-complete, then there exists a p-group A' such that $A \cong A'$ but A[p] and A'[p] are isometric.

In our second chapter, we study (weakly) ω_1 -separable *p*-groups *A* of cardinality \aleph_1 , cf. [9]. Such a group has an ω_1 -filtration $A = \bigcup_{\nu < \omega_1} A_{\nu}$ into *pure*, countable subgroups A_{ν} such that $A_{\nu+1}$ is a summand of

Copyright ©1988 Rocky Mountain Mathematics Consortium