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TWO THEOREMS ON INVERSE INTERPOLATION 

ALAN L. HORWITZ AND L.A. RUBEL 

ABSTRACT. The usual task of interpolation theory is, 
given a function / , or some of its properties, to find out what 
properties the set £ ( / ) , of all Lagrange interpolants of/, must 
have. What we mean by inverse interpolation is to reverse this 
body of problems. Namely, given the set C(f) or some of its 
properties, to recover / or some of its properties. We stress 
that £ ( / ) is considered as an unstructured set of polynomials. 

Our first result asserts that if / is analytic on the unit interval, 
then / is completely determined by the set £ ( / ) . Our second result 
constructs a large class of infinitely differentiable functions / on the 
unit interval, such that CC(f) = V, the set of all polynomials. In other 
words, every polynomial in the world is a Lagrange interpolant of a 
Lagrange interpolant of / . Thus, such an / is in no wise recoverable 
from £(£( / ) ) . So on the one hand, £ ( / ) determines / if / is analytic on 
[0,1], while on the other hand, £ (£( / ) ) does not determine / if / is only 
assumed C°° on [0,1]. There is clearly a gap in our knowledge here that 
should be closed-see the problems at the end of the paper. In several 
further papers we are now preparing, we pursue such related questions 
as, "if we assume a uniform bound on all the Lagrange interpolants of 
/ , what does this tell us about / " ? 

If / is a real-valued function on a set £, we say that a polynomial p, 
say of degree n, is a Lagrange interpolant of/, if there exist n+1 distinct 
numbers xo, x\,...xn in S such that /(#*) = p(%i) for z = 0 , 1 , . . . , n. 
Of course there may be other points x where p(x) = f(x). Thenp must 
be given by the usual Lagrange interpolation formula 
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