TWO THEOREMS ON INVERSE INTERPOLATION

ALAN L. HORWITZ AND L.A. RUBEL

Abstract

The usual task of interpolation theory is, given a function f, or some of its properties, to find out what properties the set $\mathcal{L}(f)$, of all Lagrange interpolants of f, must have. What we mean by inverse interpolation is to reverse this body of problems. Namely, given the set $\mathcal{C}(f)$ or some of its properties, to recover f or some of its properties. We stress that $\mathcal{L}(f)$ is considered as an unstructured set of polynomials.

Our first result asserts that if f is analytic on the unit interval, then f is completely determined by the set $\mathcal{L}(f)$. Our second result constructs a large class of infinitely differentiable functions f on the unit interval, such that $\mathcal{L L}(f)=\mathcal{P}$, the set of all polynomials. In other words, every polynomial in the world is a Lagrange interpolant of a Lagrange interpolant of f. Thus, such an f is in no wise recoverable from $\mathcal{L}(\mathcal{L}(f))$. So on the one hand, $\mathcal{L}(f)$ determines f if f is analytic on $[0,1]$, while on the other hand, $\mathcal{L}(\mathcal{L}(f))$ does not determine f if f is only assumed C^{∞} on $[0,1]$. There is clearly a gap in our knowledge here that should be closed-see the problems at the end of the paper. In several further papers we are now preparing, we pursue such related questions as, "if we assume a uniform bound on all the Lagrange interpolants of f, what does this tell us about f "?
If f is a real-valued function on a set S, we say that a polynomial p, say of degree n, is a Lagrange interpolant of f, if there exist $n+1$ distinct numbers $x_{0}, x_{1}, \ldots x_{n}$ in S such that $f\left(x_{i}\right)=p\left(x_{i}\right)$ for $i=0,1, \ldots, n$. Of course there may be other points x where $p(x)=f(x)$. Then p must be given by the usual Lagrange interpolation formula

$$
p(x)=\sum_{k=0}^{n} f\left(x_{k}\right) l_{k}(x)
$$

[^0] 1986.

[^0]: AMS 1980 Subject Classification Number : 41A05.
 The research of the second author was paritally supported by a grant from the National Science Foundation.

 Received by the editors on April 29, 1986 and in revised form on October 31,

