WEIGHTED INEQUALITIES FOR A VECTOR-VALUED STRONG MAXIMAL FUNCTION

OSVALDO N. CAPRI AND CRISTIAN E. GUTIÉRREZ

ABSTRACT. We show weighted weak type and strong type norm inequalities for a vector analogue of the strong maximal function.

1. Let f be a locally integrable function on \mathbb{R}^n , the strong maximal function $M_s f$ is defined by

$$M_s f(x) = \sup_{x \in R} \frac{1}{|R|} \int_R |f(y)| dy,$$

where the supremum is taken over all rectangles R in \mathbb{R}^n , with edges parallel to the coordinate axes. We shall denote this class of rectangles by \mathcal{R} .

If $1 < q < \infty$ and $f = (f_1, \ldots, f_k, \ldots)$ is a sequence of functions defined on \mathbb{R}^n , we say that f is ℓ^q -valued if $f(x) \in \ell^q$, that is

$$|f(x)|_q = \left\{\sum_{k=1}^{\infty} |f_k(x)|^q\right\}^{1/q} < \infty.$$

For such f we define $M_s f = (M_s f_1, \ldots, M_s f_k, \ldots)$.

A weight function w will be a non-negative, locally integrable function on \mathbb{R}^n and for measurable $E \subset \mathbb{R}^n$ we write $w(E) = \int_E w(x) dx$. We say $w \in A_p(\mathcal{R}), \ 1 \le p < \infty$, if there is a constant C such that

$$\Bigl(\frac{1}{|R|}\int_R w(x)dx\Bigr)\Bigl(\frac{1}{|R|}\int_R w(x)^{-1/(p-1)}dx\Bigr)^{p-1}\leq C$$

for all $R \in \mathcal{R}$. For p = 1 the second factor on the left is understood to be ess $\sup_{x \in R} w(x)^{-1}$.

In this note we shall prove the following:

Copyright ©1988 Rocky Mountain Mathematics Consortium 565