ABSENCE OF EIGENVALUES OF THE ACOUSTIC PROPAGATOR IN DEFORMED WAVE GUIDES

R. WEDER

ABSTRACT. We prove that the acoustic propagator for deformed wave guides has no positive eigenvalues.

Introduction. The propagation of acoustic waves in a deformed wave guide with speed of propagation c(x, y) is described by the equation

(1.1)
$$\frac{\partial^2 u}{\partial^2 t} - c^2(x,y)\Delta u = 0,$$

where u(x, y, t) is a real valued function of $x \in \mathbf{R}^n, y \in \mathbf{R}, t \in \mathbf{R}$, where

(1.2)
$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial^2 x_i} + \frac{\partial^2}{\partial^2 y},$$

and where c(x, y) is a measurable real valued function of \mathbf{R}^{n+1} that satisfies

(1.3)
$$0 < c_1 \le c(x, y) \le c_2,$$

for a.e., (x, y), and c_1, c_2 positive constants.

The deformed wave guide is a perturbation of a perfect wave guide whose velocity profile, $c_0(y)$, is a measurable real valued function of yonly, and satisfies (1.3). The corresponding wave equation is

(1.4)
$$\frac{\partial^2}{\partial^2 t}u - c_0^2(y)\Delta u = 0.$$

Received by the editors on April 30, 1986.

1980 AMS Subject Classification: 76005, 78A45, 35T10, 35P25.

Copyright ©1988 Rocky Mountain Mathematics Consortium 495

Fellow, Sistema Nacional de Investigadores.