STRUCTURE PARAMETERS IN ROTATING COUETTE-POISEUILLE CHANNEL FLOW

GEORGE H. KNIGHTLY AND D. SATHER

1. Introduction. It is well-known that a number of steady state problems in fluid mechanics involving systems of nonlinear partial differential equations can be reduced to the problem of solving a single operator equation of the form

$$
\begin{equation*}
v+\lambda A v+\lambda B(v)=0, \quad v \in H, \lambda \in \mathbf{R}^{1} \tag{1.1}
\end{equation*}
$$

where H is an appropriate (real or complex) Hilbert space. Here λ is a typical "load" parameter, e.g., the Reynolds number A is a linear operator and B is a quadratic operator generated by a bilinear form. In this setting many bifurcation and stability results for problems in fluid mechanics have been obtained, the reader is referred to $[\mathbf{1}, 10$, 11, 21] and the bibliographies therein for a detailed account of such results.
In fact, there may be considerably more structure in a nonlinear stability problem in fluid mechanics than that implied by an operator equation such as (1.1). As shown in a recent series of papers by the authors [12, 13, 19], a "structure" parameter, say γ, also may be present so that equation (1.1) may be actually of the form
(*) $u-\lambda(L-\gamma M) u-F(u)-\gamma G(u)=0, u \in H, \lambda \in \mathbf{R}^{1}, \gamma \in \mathbf{R}^{1}$,
where H is again an appropriate Hilbert space, L and M are linear operators, and F and G are generated by bilinear operators. Equations of the form $\left.{ }^{*}\right)$ are derived in $[12,13]$ for Bénard-type convection problems and in [19] for the Taylor problem. It is the purpose of the present paper to describe a setting in which it is possible to determine a complete set of bifurcation equations for an operator equation of the form ${ }^{(*)}$ by using the structure parameter γ as an "amplitude" parameter rather than regarding γ as merely a constant to be incorporated into the

[^0]
[^0]: This research was supported in part by ONR Grant \# 00014-85-K-0743 and in part by NASA-Ames Grant No. NAG 2-278.

 Received by the editors on March 21, 1986.

