THE INTERMEDIATE VALUE THEOREM: PREIMAGES OF COMPACT SETS UNDER UNIFORMLY CONTINUOUS FUNCTIONS

WILLIAM H. JULIAN, RAY MINES, AND FRED RICHMAN

ABSTRACT. A strong constructive form of the intermediate value theorem is established. Let f be a uniformly continuous map from a connected, locally connected, compact metric space X to the real numbers \mathbf{R} with $\alpha < \beta$ in the range of f. Except for countably many real numbers r, if $\alpha < r < \beta$, then the set $f^{-1}(r)$ is nonempty and compact. An application is a constructive proof of the Schoenflies theorem that the interior of a Jordan curve in the plane is homeomorphic to a disk.

0. Introduction. The intermediate value theorem is often cited as a theorem from classical mathematics which is not constructively valid. The standard Brouwerian counter example is as follows.

EXAMPLE 0.1. Let a be a real number and define the function fby f(0) = -1, f(1/3) = 0 = f(2/3), f(1) = 1, and linear inbetween. Solving the equation f(x) = a for $-1 \le a \le 1$ is equivalent to determining whether $a \ge 0$ or $a \le 0$.

Bishop [2] proves the following constructive form of the intermediate value theorem:

Let $f:[0,1] \to \mathbf{R}$ be uniformly continuous and let $\alpha < \beta$ be in the range of f. If $\alpha < r < \beta$ and $\varepsilon > 0$, then $f^{-1}(r - \varepsilon, r + \varepsilon)$ is nonempty.

The following stronger constructive version of the intermediate value theorem for X = [0, 1] is Problem 15 in [2, page 110].

(A) Let $f : X \to \mathbf{R}$ be uniformly continuous with $\alpha < \beta$ in $fX = \{f(x) : x \in X\}$. For all but countably many real numbers r, if $\alpha < r < \beta$, then the set $f^{-1}(r)$ is nonempty and compact.

Received by the editors on October 26, 1982, and in revised form on March 28, 1986.

AMS(MOS) subject classification 1980: Primary 54E45, 03F65.

Copyright ©1988 Rocky Mountain Mathematics Consortium 25