A NOTE ON TWO-GENERATOR GROUPS

MARTIN J. EVANS

Following J.L. Brenner and James Wiegold [1], let $\Gamma_{1}^{(2)}$ stand for the collection of all finite non-abelian groups G with the property that every non-trivial element is in a two-element generating set of G in which one element is of order two.
In [1] it is shown that $\operatorname{PSL}(2, q) \in \Gamma_{1}^{(2)}$ except when $q=2,3$ or 9 . This led the above mentioned authors to ask whether almost all finite simple groups in $\Gamma_{1}^{(2)}$ are projective special linear groups.
In this note we answer this question negatively by showing that $\Gamma_{1}^{(2)}$ contains the Suzuki groups $S z\left(2^{2 n+1}\right),(n \geq 1)$. However, in the opposite direction we prove that the groups PSL $\left(2, p^{m}\right)$, with p an odd prime, $p^{m} \neq 3$ or 9 , are the only simple Chevalley groups over a field of odd characteristic that are contained in $\Gamma_{1}^{(2)}$.

Throughout the proof of the following theorem we use standard facts concerning Suzuki groups. These can be found in [3].

THEOREM 1. Let $G=S z(q)$ be a Suzuki group, where $q=2^{2 n+1}$ and $n \geq 1$. Then $G \in \Gamma_{1}^{(2)}$.

Proof. Given $x \in G$, we shall say that y is a mate for x in G if $\langle x, y\rangle=G$. Let Q be a Sylow 2-subgroup of G and let $z \in G$ be an involution not contained in Q. It follows from [3; Proposition 13] that each non-trivial element of odd order in G is conjugate to an element of the form πz where π is an involution in Q. In particular there exist involutions $\pi_{1}, \pi_{2} \in Q$ such that $\pi_{1} z$ is of order $q-1$ and $\pi_{2} z$ is of order $q+r+1$, where $r^{2}=2 q$.
Let $x \in G$ be a non-trivial element of odd order. We aim to show that there exists an involution π_{x} such that $\left\langle x, \pi_{x}\right\rangle=G$. Clearly it suffices to prove that some conjugate of x has a mate of order two in G. Therefore we may assume that $x=\pi z$ for some involution $\pi \in Q$. We distinguish two cases: (i) the order of x divides $q^{2}+1$; (ii) the order of

[^0]
[^0]: Received by the editors on April 24, 1986.

