SPHERES WITH CONTINUOUS TANGENT PLANES

L.D. LOVELAND

1. Introduction. Burgess [2] soved Problem 12 in The Scottish Book by exhibiting a wild 2 -sphere in E^{3} having a continuous family of tangent planes. A 2 -sphere Σ in E^{3} is said to be wild if no space homeomorphism takes Σ onto the sphere S defined by $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$. Spheres that are not wild are called flat or tame. The definition of a plane being tangent to a surface Σ in Euclidean 3-space E^{3} comes from Problem 156 of The Scottish Book. A plane $T(q)$ is tangent to Σ at a point q of Σ if, for each positive number ϵ, there exists a round ball B centered at q such that the measure of the angle between $T(q)$ and every straight line $L(q, x)$ determined by q and a point x of $\Sigma \cap B \backslash\{q\}$ is less than ϵ. A surface may have infinitely many tangent planes at a single point q as ones sees by examining the surface obtained by rotating the graph of $|x|^{1 / 2}+|z|^{1 / 2}=1$ about the z-axis and letting $q=(0,0,1)$, see Figure 1. A 2 -sphere Σ is said to have continuous tangent planes over a subset K of Σ if, for each q in K, there is a unique tangent plane $T(q)$ to Σ at q such that $\left\{T\left(q_{i}\right)\right\}$ converges to $T(q)$ whenever $\left\{q_{i}\right\}$ is a sequence of points of K converging to q. When we say Σ has a continuous family of tangent planes we mean to take K equal to Σ.
The wildness of the spheres described by Burgess [2] occurs at points of the 2 -sphere Σ that belong to its rim. The $\operatorname{rim} R$ of Σ is the set of all points q of Σ where the normal to some tangent plane to Σ at q fails to pierce Σ at q. In [2] the rim of Σ is a simple closed curve containing the single wild point of Σ. The original motivation for this paper came from a desire to better understand the rim of Σ and its relation to the wild set. A point q of a 2 -sphere Σ in E^{3} is said to belong to the wild set W of Σ if there is no 2 -cell K in Σ such that q lies in Int K and K lies on a tame 2 -sphere in E^{3}. Example 4.2 describes a 2 -sphere Σ in E^{3} with a continuous family of tangent planes, a 1-dimemsional wild set, and a rim that is the union of a countable sequence of disjoint simple closed curves.
[^0]
[^0]: Received by the editors on January 13, 1983 and in revised form on November 11, 1983.

