SPHERES WITH CONTINUOUS TANGENT PLANES

L.D. LOVELAND

Introduction. Burgess [2] soved Problem 12 in The Scot-1. tish Book by exhibiting a wild 2-sphere in E^3 having a continuous family of tangent planes. A 2-sphere Σ in E^3 is said to be wild if no space homeomorphism takes Σ onto the sphere S defined by $\{(x, y, z)|x^2 + y^2 + z^2 = 1\}$. Spheres that are not wild are called *flat* or *tame*. The definition of a plane being tangent to a surface Σ in Euclidean 3-space E^3 comes from Problem 156 of The Scottish Book. A plane T(q) is tangent to Σ at a point q of Σ if, for each positive number ϵ , there exists a round ball B centered at q such that the measure of the angle between T(q) and every straight line L(q, x) determined by q and a point x of $\Sigma \cap B \setminus \{q\}$ is less than ϵ . A surface may have infinitely many tangent planes at a single point q as ones sees by examining the surface obtained by rotating the graph of $|x|^{1/2} + |z|^{1/2} = 1$ about the z-axis and letting q = (0, 0, 1), see Figure 1. A 2-sphere Σ is said to have continuous tangent planes over a subset K of Σ if, for each q in K, there is a unique tangent plane T(q) to Σ at q such that $\{T(q_i)\}$ converges to T(q) whenever $\{q_i\}$ is a sequence of points of K converging to q. When we say Σ has a continuous family of tangent planes we mean to take K equal to Σ .

The wildness of the spheres described by Burgess [2] occurs at points of the 2-sphere Σ that belong to its rim. The rim R of Σ is the set of all points q of Σ where the normal to some tangent plane to Σ at q fails to pierce Σ at q. In [2] the rim of Σ is a simple closed curve containing the single wild point of Σ . The original motivation for this paper came from a desire to better understand the rim of Σ and its relation to the wild set. A point q of a 2-sphere Σ in E^3 is said to belong to the wild set W of Σ if there is no 2-cell K in Σ such that q lies in Int K and K lies on a tame 2-sphere in E^3 . Example 4.2 describes a 2-sphere Σ in E^3 with a continuous family of tangent planes, a 1-dimensional wild set, and a rim that is the union of a countable sequence of disjoint simple closed curves.

Received by the editors on January 13, 1983 and in revised form on November 11, 1983.