QUASI-COHERENT MODULES ON QUASI-AFFINE SCHEMES

FREDERICK W. CALL

ABSTRACT. It is shown that a quasi-coherent sheaf of modules on a quasi-compact open subset of an affine scheme can be realized as an object in a subcategory of a module category. In particular, the modules of sections is canonically isomorphic to a (torsion theoretic) localized module. This generalizes the noetherian case of P.-J. Cahen. A few simple examples exploit this relationship.

1. Introduction. If A is a noetherian ring and U is an open subset of $X = \operatorname{Spec} A$, then P.-J. Cahen [1, Theorem 6.1] has shown, by torsion theoretic methods, that for any A--module M, the module of sections $r(u, \tilde{M})$ of the quasi-coherent Q_x -module \tilde{M} is the module of quotients $Q_U(M) = \lim \to \operatorname{Hom}(I, M)$ where the direct limit is taken over the set $\phi_u = \{I \subseteq A | \forall p \in U, I \not\subseteq p\}$. Our aim is to generalize this result to an arbitrary (commutative) ring in the case U is a quasi-compact open subset of Spec A.

We show that for any such U:1) every quasi-coherent Q_U -module F is the restriction to U of some quasi-coherent \mathcal{Q}_X -module \tilde{M} ; 2) if \tilde{M} is any extension of F, the module of sections $\Gamma(U,F) = \Gamma(U,\tilde{M})$ is just the module of quotients $Q_U(M) = \lim \to \operatorname{Hom}(I,\overline{M})$ where $\overline{M} = M/T_u(M)$ and $T_U(M) = \{x \in M | (0 : x)\varepsilon_U^{\varepsilon}\}$ is the torsion submodule of M with respect to the torsion class T_U ; and 3) the category of quasi-coherent \mathcal{Q}_U -modules is equivalent to the category $(A, T_U) - \operatorname{mod}$. Here $(A, T_U) - \operatorname{mod}$ is the full subcategory $\{M \in A - \operatorname{mod} | \phi_M : M = \operatorname{Hom}(A, M) \to Q_U(M)$ is an isomorphism $\}$. As a corollary, torsion theoretic methods in $(A, T_U) - \operatorname{mod}$ yield interesting proofs of generalizations of standard theorems in algebraic geometry as well as new theorems in this class of \mathcal{Q}_U -modules. We give an example of the latter by characterizing the injective objects in the category of quasi-coherent \mathcal{Q}_U -modules.

Received by the editors on August 22, 1985 and in revised form on January 28, 1986.