COMPLETELY MONOTONIC FUNCTIONS OF THE FORM $s^{-b}\left(s^{2}+1\right)^{-a}$

DANIEL S. MOAK

Abstract

The function $s^{-b}\left(s^{2}+1\right)^{-a}$ is shown to be completely monotonic for $b \geq 2 a \geq 0$, for $b \geq a \geq 1$. or for $0 \leq a \leq 1, b \geq 1$. Moreover this function is proven not to be completely monotonic for $0 \leq b<a$, nor for $a=b, 0<a<1$. This proves some conjectures of Askey [1], and extends some of the results of [2], [3], and [4].

1. Introduction. In recent years Askey, Gasper, Ismail, and others have looked into the problem of determining the nonnegativity of the Bessel function integrals $\int_{0}^{t}(t-s)^{c} s^{d} J_{\nu}(s) d s$, as well as some ${ }_{1} F_{2}^{\prime} s$. See $[2,3]$. This is related to the complete monotonicity of $s^{-a}\left(s^{2}+1\right)^{-b}$ as we shall see in this article.
The definition of complete monotonicity used in this paper is:

DEFINITION. A function $f(s)$ is completely monotonic (C.M.) if

$$
(-)^{n} f^{(n)}(s) \geq 0, s>0, n=0,1,2, \cdots
$$

The main result we will need is the Hausdorff-Bernstein-Widder theorem [8].

THEOREM A. $f(s)$ is completely monotonic if and only if it is the Laplace Transform of a positive measure on $(0, \infty)$.

Accordingly, we will make the following definitions.

DEFINITION. Let \mathcal{L} denote the Laplace transform operator and let \mathcal{L}^{-1} denote its inverse. We define:

$$
\begin{equation*}
S_{a, b}(t)=\mathcal{L}^{-1}\left(s^{-a}\left(s^{2}+1\right)^{-b}\right) \tag{1.1}
\end{equation*}
$$

[^0]
[^0]: Received by the editors on October 31, 1984 and in revised for on January 23, 1986.

